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Abstract

This work presents a physics-informed neural network based framework to model the
strain-rate and temperature dependence of the deformation fields (displacement, stress,
plastic strain) in elastic-viscoplastic solids. A detailed discussion on the construction of
the physics-based loss criterion along with a brief outline on ways to avoid unbalanced
back-propagated gradients during training is also presented. We also present a sim-
ple strategy with no added computational complexity for choosing scalar weights that
balance the interplay between different terms in the composite loss. Moreover, we also
highlight a fundamental challenge involving selection of appropriate model outputs so
that the mechanical problem can be faithfully solved using neural networks. Finally,
the effectiveness of the proposed framework is demonstrated by studying two test prob-
lems modeling the elastic-viscoplastic deformation in solids at different strain-rates and
temperatures, respectively.

1 Introduction

Modeling the elastic-plastic response of materials using conventional numerical methods,
such as finite element method, Isogeometric analysis, or mesh-free methods, has always been
computationally expensive due to the inherent iterative nature of discretization algorithms
used in such methods. Furthermore, multitude of ‘fundamentally accurate’ theories for
the high-fidelity modeling of dislocation mediated plastic deformation at different scales
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] or fracture modeling in materials [12, 13, 14, 15, 16], is bringing
these numerical solvers to their limits. Therefore, attempts are being made to explore the use
of artificial intelligence, specifically Deep Neural Networks (DNN), to speed up (nonlinear)
mechanical modeling of materials. The recent flurry of research involving the use of DNN to
model physical systems has also been facilitated by the notable speed enhancements in the
current computer architecture systems, and availability of computationally efficient open-
source machine learning frameworks (PyTorch [17], Tensorflow [18], and Keras [19] among
others).
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In fact, the idea of using the extraordinary approximating capability of DNN, established
by the Universal approximation theorem [20], to obtain the solution of Partial Differential
Equations (PDEs) by minimizing the network’s loss function, comprising the residual error of
governing PDEs and its initial/boundary conditions, has been around for some time [21, 22].
More recently, Raissi et. al [23, 24] has extended this concept to develop a general Physics-
Informed Neural Network (PINN) framework for solving the forward and inverse problems
involving general nonlinear PDEs by relying on small or even zero labeled datasets. Several
applications of PINNs can be found in the literature ranging from modeling of fluid flows
and Navier Stokes equations [25, 26, 27, 28], cardiovascular systems [29, 30], and material
modeling [31, 32, 33, 34, 35, 36], among others. In addition to the PINN based approaches
mentioned above, several data-driven approaches [37, 38, 39, 40] have also been proposed
to generate surrogate models for modeling the solution of PDEs governing the behavior
of physical systems. However, data-driven methods usually require extensive amount of
experimentally or computationally generated data to learn a reliable model which may fail
to satisfy physics-based constraints. On the other hand, the embedding of physics in the
PINN based framework enforces physics-based constraints on the neural network outputs,
thus enabling the generation of a high-fidelity model while simultaneously reducing (or even
eliminating) the need for bigger training datasets.

Recurrent Neural Networks (RNN) and its variants Gated Recurrent Units [41] and Long
Short-Term Memory (LSTM) [42] are another family of neural network models that are
specifically designed to handle sequential data – making them an attractive choice to learn
and predict (path-dependent) plastic behavior in metals. The presence of history-dependent
hidden states in these models enable them to re-use relevant information from previous inputs
to make future predictions which warrants their role similar to those of history-dependent
internal variables (such as equivalent plastic strains) in computational plasticity. Various
approaches using RNNs [43, 44, 45, 46, 47] have successfully demonstrated the predictive
capability of neural networks to learn the path-dependent constitutive behavior in metals
with great accuracy. These works showcase the potential of RNN based constitutive mod-
eling to speedup existing numerical solvers by permitting direct evaluation of stresses at
the integration points without the need for iterative return mapping algorithms. However,
developing a physics-informed neural network to model the spatio-temporal variation of de-
formation in elastic-plastic solids, along with its dependence on strain-rate and temperature,
poses several technical challenges. Through this work, we take a first step in highlighting
these challenges and demonstrate the strength of PINNs for modeling elastic-viscoplastic
deformation in materials.

The goal of the present work is to demonstrate the (physics-based) predictive capability
of DNN models to model spatio-temporally varying deformation fields within elastic-plastic
solids under monotonous loading conditions. In particular, two feedforward DNNs are used as
the global approximator to study the dependence of spatio-temporally varying deformation
fields (displacement, stress, and plastic strain) on strain rate (applied loading rate) and
temperature, respectively. We provide several (but non-exhaustive) comparisons of the choice
of the DNN architecture (number of hidden layers and number of neurons per layer) chosen
to approximate the solution. A detailed discussion on the construction of (physics-based)
composite loss along with a brief summary on ways to avoid unbalanced back-propagated
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(exploding) gradients during model training is also presented. We also present a strategy with
no added computational complexity for choosing the scalar weights that balance the interplay
between different terms in composite loss. Although the current work focuses on the scenarios
with monotonic loading paths, we note that the deformation of an elastic-viscoplastic solid
is a highly nonlinear function of temperature, strain rate, spatial coordinates, and strain.
This real-time stress predictive capability for elastic-viscoplastic materials enjoys special use
in energy storage devices such as the design and development of lithium metal solid-state-
batteries. Specifically, the study conducted here corresponds to analyzing the effect of impact
(i.e. crash) and heat to the solid Li Anode in the solid state batteries.

The rest of this paper is organized as follows: After introducing notation and terminology
immediately below, Sec. 2 presents a brief review of the equations for mechanical equilibrium
for elastic-viscoplastic solids. The details of the neural network architecture and construction
of the loss function are presented in Sections 3 and 4, respectively. Section 5 presents the
results that evaluate the neural network models and demonstrate their predictive capabilities
in modeling the temperature and strain rate dependence of deformation fields along with
their spatio-temporal evolution for the two test cases discussed. Finally, conclusion of the
current work, along with outlook of the future work, is presented in Sec. 6.

Notation and Terminology

Cartesian coordinate system is invoked for the ambient space and all (vector) tensor compo-
nents are expressed with respect to the basis (e1, e2, e3) of this coordinate system. Vectors
and tensors are represented by bold face lower- and upper-case letters, respectively. The
symbol ‘·’ denotes single contraction of adjacent indices of two tensors (i.e. a · b = aibi or
A ·n = Aijnj). The symbol ‘:’ denotes double contraction of adjacent indices of two tensors
of rank two or higher (i.e. A : B = AijBij or C : A = CijklAkl). The following list describes
the recurring mathematical symbols used in this paper.

Mathematical symbols
C Fourth order elasticity tensor
tr(φ) trace of the vector/tensor quantity φ
||φ|| L2 norm of the vector/tensor quantity φ
Div Divergence operator
∇ Gradient operator
I Second order Identity tensor
A′ Deviatoric part of a second order tensor A i.e. A′ = A− tr(A)I
σ Stress in the material

Γ̂ Strain rate
t Time

Γ Scalar strain defined as Γ̂ × t
Ω Volumetric domain
x ≡ (x1, x2) Spatial coordinates in the domain Ω
θ Temperature of the domain Ω
∂Ω External boundary of the domain Ω
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n External unit outward normal to ∂Ω
εe Elastic strain tensor
εp Plastic strain tensor
ε̇p Plastic strain rate tensor
ε Total strain tensor
u Displacement vector
E Young’s Modulus
µ Shear Modulus
ν Poisson’s ratio
˙̄εp Equivalent plastic strain rate
tbc Traction vector on Neumann boundary ∂ΩN

ubc Displacement vector on Dirichlet boundary ∂ΩD

A Pre-exponential factor
Q Activation energy
R Gas constant
m ∈ (0, 1] Strain-rate-sensitivity parameter
sign(·) Sign of the scalar quantity (·)
S Material strength
Ss Saturation value of S for a given strain rate and temperature
{H0, S∗, a, n} Strain-hardening parameters
S0 Initial (t = 0) value of the material strength S

2 Governing equations

We briefly recall the system of nonlinear PDEs governing the behavior of elastic-viscoplastic
solids under loads at small deformation. The reader is referred to standard textbooks [48]
for a detailed discussion on the thermodynamics and mechanics of continuous media. The
equilibrium equation, in the absence of body and inertial forces, is written as

Divσ = 0 in Ω. (1)

The above PDE, together with the boundary conditions

σ · n = tbc on ∂ΩN and u = ubc on ∂ΩD, (2)

describe the strong form of mechanical equilibrium. The total strain ε is given by the
symmetric part of the displacement gradient, i.e. ε = 0.5(∇u + (∇u)T ). ε is decomposed
into the sum of elastic and plastic strain components, i.e. ε = εe + εp. The stress is given by
the Hooke’s law

σ = C : εe. (3)

The plastic strain evolution is governed by

ε̇p =

√
3

2
˙̄εp
σ′

||σ′||
. (4)
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The equivalent plastic strain rate ˙̄εp is assumed to be given by a power law of the form

˙̄εp = A exp

(
− Q

Rθ

)(√
3

2

||σ′||
S

)1/m

. (5)

The flow strength S is assumed to evolve according to

Ṡ = h(S,σ). (6)

Following [49], the hardening function h(S,σ) is taken as

h(S,σ) =

[
H0

∣∣∣∣1− S

Ss

∣∣∣∣a sign

(
1− S

Ss

)]
˙̄εp, with

Ss = S∗

[
˙̄εp

A exp
(
− Q
Rθ

)]n .
In this work, we use the values of material parameters listed in Table 2 which correspond to
an elastic-viscoplastic model for Lithium [49]. These parameters have been calibrated using
the experimental data from direct tension tests on polycrystalline lithium specimens [50].

A s−1 Q kJ/mol m S0 MPa H0 MPa S∗ MPa a n E MPa ν

4.25×104 37 0.15 0.95 10.0 2.0 2.0 0.05 7810 0.38

Table 2: Material parameters for the elastic-viscoplastic model of Lithium.

3 Model Architecture

The central idea is to use a fully connected DNN to approximate the nonlinear mapping
(for deformation fields) Ψ : X → Y , where X ∈ RNin and Y ∈ RNout denote the Nin-
dimensional input and Nout-dimensional output arrays for the mapping, respectively. In
particular, we design and train two specific fully connected neural networks for modeling the
elastic-viscoplastic behavior in two-dimensional solids and its dependence on strain rate, and
temperature, respectively. To this end, we choose the inputs and the outputs of the model
for the two cases before moving on to describing the model architecture.

Inputs of the model: The inputs (Nin = 4) for both the cases are described in the table
below:

Case I : Strain rate dependence {x1, x2, Γ, Γ̂}

Case II : Temperature dependence {x1, x2, Γ, θ}.

Outputs of the model: The elastic-plastic deformation can be uniquely characterized by
determining displacement vector u and any one of the two tensor fields, plastic strain εp or
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stress σ (since they are related by (3)), along with the determination of internal variables.
Therefore, a preferred choice of outputs for the neural network model would include u and one
of the two fields (εp or σ) plus internal variables. However, as demonstrated later in Appendix
A, the DNN model with such choice of outputs suffers from degraded accuracy and conver-
gence issues. Therefore, we propose a mixed-variable formulation, i.e., displacement, stress,
plastic strain and the internal variables as the DNN outputs in this work. This formulation
is found to be superior to the other formulation with regard to the trainability of the network
as discussed later in appendix A. The model outputs for the proposed mixed-variable formu-
lation for two-dimensional plane-strain conditions are {u1, u2, σ11, σ22, σ33, σ12, εp11, ε

p
22, ε

p
12, S}

implying Nout = 10. In doing so, we have used the facts that the stress tensor is symmetric
and the plastic strain tensor is symmetric and deviatoric (i.e. tr(εp) = 0).

The hyper-parameters completely defining the neural network model comprise the number
of hidden layers Nl, the number of neurons per layer Nn, and the activation function(s).
The fully connected neural network algorithm representing the mapping Ψ also includes the
following main elements:

• Normalization of the inputs: Each input component Xi is individually scaled between
−1 and 1 before being used as the network input. The normalization is done by linearly
projecting it within a range of [−1, 1] as follows

X̄i = −1 + 2
ψi(Xi)−min(ψi(Xi))

max(ψi(Xi))−min(ψi(Xi))
, (7)

where ψi is a (known) transformation based on the physical concepts in the process of
elastic-viscoplastic deformation. The use of such transformations have previously been
shown to improve neural network training in terms of speed and accuracy [51, 45].

• Activation of the lth hidden layer: H(l), the output array of any hidden layer 1 ≤ l ≤ Nl,
is calculated as

H(l) = Φ(l)
(
W (l)H(l−1) + b(l)

)
=⇒ H(l) = Φ(l)

(
Npre∑
k=1

W
(l)
ik H

(l−1)
k + b

(l)
i

)
, 1 ≤ i ≤ Nn. (8)

In the above, Φ(l) denotes the activation function for the hidden layer l which operates
elementwise on its arguments. W (l) and b(l) denote the weight matrix and bias array
for the hidden layer l, respectively. Npre denotes the number of the neurons in the
layer l − 1. For l = 1: Npre = Nin and H(0) = X̄

• Computation of the outputs: The normalized output array Ȳ is similarly calculated
as

Ȳi =

(
Nn∑
k=1

W
(o)
ik H

(Nl)
k + b

(o)
i

)
, 1 ≤ i ≤ Nout, (9)

W (o) and b(o) denote the weight matrix and bias for the output layer, respectively.
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Figure 1: Schematic showing the geometry and the applied boundary conditions.

• Denormalization of the network outputs: Each component Ȳi is then individually de-
normalized to yield the output array Y as

Yi = min(Yi) +
Ȳi + 1

2
(max(Yi)−min(Yi)) . (10)

Henceforth, we denote the set of all weight matrices and bias arrays of the neural network
by W and b, respectively. In the present work, the hyperbolic tangent function is used as
activation function for all the hidden layers, i.e. Φ(l) = tanh ∀ l ∈ [1, Nl]. The transformation
(see (7)) for all inputs is taken to be identity except for the strain rate, which is taken to be
log10 function since strain rates may vary over multiple orders of magnitudes.

4 Construction of the loss function

The development of a PINN based approach to solve a system of nonlinear PDEs renders
us an optimization problem which involves solving for (W , b) that minimizes network’s to-
tal loss. The composite loss L in semi-supervised approach comprises the summation of
supervised data loss Ldata and the physics-based loss Lphy i.e. L = Ldata +Lphy. The (nondi-
mensional) supervised data loss Ldata measures the discrepancy between the normalized
ground truth data T̄ and the neural network outputs Ȳ and is given by

Ldata =
1

Ndata

Ndata∑
j=1

Nout∑
i=1

||Ȳ (j)
i − T̄

(j)
i ||2, (11)

where Ndata denotes the number of ground truth samples.

To evaluate the physics-based loss Lphy, we introduce a finite set of randomly distributed
collocation points discretizing the (normalized) input space. The whole set of collocation
points is denoted by P = {Pω,Pζ,D,Pζ,N ,Pη} where Pω denotes the collocation points in the
entire input space [−1, 1]Nin . Pζ,D and Pζ,N denote the subset of P that intersects with the
∂ΩD and ∂ΩN , respectively. Pη denotes the subset of P that intersects with Γ = 0 (or t = 0).
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To this end, we construct the physics-based loss Lphy with seven components i) PDE
loss Lpde, ii) Dirichlet boundary condition loss LDbc, iii) Neumann boundary condition loss
LNbc, iv) initial condition loss Lic, v) constitutive loss Lc corresponding to the satisfaction of
constitutive law, vi) plastic strain rate loss Lpsr corresponding to the equation governing the
evolution of plastic strain, and vii) strength loss Ls enforcing the material strength evolution
equation. Each component of Lphy is individually calculated as follows:

Lpde = ||Divσ||2Pω ; LDbc = ||u− ubc||2Pζ,D
LNbc = ||σ · n− tbc||2Pζ,N ; Lic = ||Y − I0||2Pη
Lc = ||σ − C : (∇u− εp)||2 ; Ls = ||Ṡ − h(S,σ)||2

Lpsr = MMSE

(
ε̇p −

√
3

2
A exp

(
− Q

Rθ

)(√
3

2

||σ′||
S

)1/m
σ′

||σ′||

) (12)

In the above, I0 denotes the initial state of the system i.e. outputs at t = 0. The loss criterion
MMSE is discussed in detail below. Lphy is then given as the weighted sum of these loss
components

Lphy = λ1Lpde + λ2Lic + λ3Lpsr + λ4Ls + λ5Lc + λ6LDbc + λ7LNbc,

where λi(i = 1...6) are the scalar weights.

Next, we briefly discuss the two main difficulties that hinder the training of DNNs for
elastic-viscoplastic modeling applications.

1. The power law dependence of the equivalent plastic strain rate ε̇p (Eq. (5)) leads to
large values of L2 norm of Lpsr loss (≥ O(1018)) which causes unstable imbalance in the
magnitude of the back-propagated gradients during the training when using common
loss criterions such as Mean-Squared-Error (MSE). Therefore, in this work, we use a
novel Modified Mean Squared Error (MMSE) loss criterion to reduce the numerical
stiffness associated with equation (5) and allow stable gradients to be used during the
training

MMSE(A) = log10(1 + ||A||). (13)

In the above, A denotes the residual value. The loss criterion is equivalent to the Mean
Squared Error (MSE) criterion when the discrepancy between the residual values are
small.

2. The relative coefficients λi (i = 1..6) for all the losses comprising Lphy play an impor-
tant role in mitigating the gradient pathology issue during the training [52]. There are
competing effects between these different loss components which can lead to conver-
gence issues during the minimization of the composite loss L (see [25, Sec. 4.1]). While
the recent advances in mitigating gradient pathologies [52, 53] might improve predic-
tive accuracy, they introduce additional computational and memory overhead because
of the calculation of an adaptive factor for each loss component. In this work, we
devise a simple strategy, with no added computational complexity, to evaluate the co-
efficients which remain constant during the course of training. The strategy is outlined
as follows:
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• The Dirichlet boundary condition and initial condition losses (Lic and LDbc) are
calculated in a normalized manner (scaled between [−1, 1]). So, we take λ2 =
λ6 = 1.

• The other loss components are nondimensionalized using appropriate scales as
shown in Table 3. µc is a constant chosen to scale quantities with units of stress.
Based on the observation that stress is often nondimensionalized by Shear Mod-
ulus µ in conventional numerical methods, we choose µc = 0.01µ to achieve tight
tolerance on the equilibrium equation and traction boundary conditions.

• Since material strength S and µ differ by orders of magnitude, S is nondimen-
sionalized by S0.

• We nondimensionalize time by using strain rate Γ̂ , since Γ̂ sets the time scale for
the problem.

• The length is nondimensionalized by the characteristic length of the domain,
chosen to be H in this work.

Loss component Scaling

Lpde λ1 = H2

µc2

Lic λ2 = 1

Lpsr λ3 = 1

Γ̂ 2

Ls λ4 = 1

(S0 Γ̂ )
2

Lc λ5 = 1
µc2

LDbc λ6 = 1

LNbc λ7 = 1
µc2

Table 3: Scaling constants for different physics-based loss components.

4.1 Training the network

The neural network is implemented and trained using PyTorch framework [17]. Before the
training, the trainable parameters (W , b) of the neural network are initialized using Xavier
initialization [54] technique. Adam optimizer [55] is used as the optimization algorithm
with an initial learning rate η = 10−3 with the other hyper-parameters set to their default
value. We continue training for around 8000 epochs (complete passes through the whole
training dataset) during which the learning rate is monitored and adaptively reduced by
using ReduceLROnPlateau scheduler with the value of patience set to 30. The dataset
collection strategy, and splitting into the training/validation/test datasets are discussed in
greater detail in Section 5.
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Figure 2: Schematic showing the geometry and the applied boundary conditions.

5 Results & Discussion

To illustrate the application of the proposed approach, we design and train specific neural
networks for the two test cases focusing on reproducing the complex behavior of an elastic-
viscoplastic material under loads along with its dependence on a) strain rate and b) tem-
perature. Fig. 2 shows a schematic of the body along with the applied boundary conditions
for both the cases. Without loss of generality, the body is assumed to deform quasistatically
under plane strain conditions in the absence of body forces. An in-house code is developed
using deal.II [56] to generate the ground truth data by solving the system of equations (1)
- (6) up to strain Γ = 0.04. The code uses Finite Element Method with bi-linear elements
on a grid size of 32 × 32. To qualitatively assess the accuracy of the predictions, we define
Root-Mean-Squared Error (RMSE) e as

e(f) =

√√√√∑M
j=1 ||f

j
pred − f

j
ref ||2∑M

j=1 ||f
j
ref ||2

. (14)

where f is the (normalized) quantity of interest and M = 1024 (= 32 × 32) denotes the
number of reference points in the spatial domain. The averaged-RMSE E over all output
quantities is then defined as

E =
1

Nout

Nout∑
i=1

e(fi). (15)

In the following, a neural network architecture with Nl number of layers and Nn number of
neurons per layer will be referred by Nl ×Nn.
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Γ = 0.01 Γ = 0.02 Γ = 0.04 Γ = 0.01 Γ = 0.02 Γ = 0.04

Figure 3: Comparison of the results obtained from physics-informed neural network model
(left block) with the ground truth reference data (right block) for Γ̂ = 10−2.5 s−1.

5.1 Case I: Strain rate dependence

Data collection strategy : To study the effect of strain rate Γ̂ on the spatio-temporal evolution
of deformation fields in the body, we generate the numerical data at the centroid of each

11



Figure 4: Comparison of the composite loss
L for different neural network architectures
(Nl×Nn). Nl and Nn denotes the number of
layers and number of nodels per layer, repec-
tively.

Figure 5: Stress-strain responses for different
strain rates in and outside of the training data
range.

grid element for the following strain rates Γ̂ (s−1): {10−4, 10−3, 10−2, 10−1} at a constant
temperature T = 298K upto strain Γ = 0.04. The dataset is then randomly split into a
80 : 20 : 0 ratio for training, validation, and test purposes. We note that the testing data is
set to zero as the model testing will be performed separately for several strain rates Γ̂ that
are different from those used for generating the training data.

First, we perform a (non-exhaustive) parametric study to identify a suitable number of
hidden layers Nl and number of neurons per layer Nn needed to model the deformation field
with an acceptable accuracy. We train 6 neural networks with the following architectures:
i) 5× 100, ii) 6× 100, iii) 6× 120, iv) 7× 120, v) 8× 120, and vi) 9× 120. Figure 4 presents
the training history for each of these architectures. As expected, we see a merit in increasing
both Nn and Nl initially but the final value of the composite loss stops improving when the
number of layers are increased from 7 to 9 keeping Nn fixed at 120. These three network
architectures (7 × 120, 8 × 120, and 9 × 120) reduce the nondimensional composite loss by
almost five orders of magnitude (from 102 to ∼ 10−3). The values of the corresponding
validation losses are monitored to notice any overfitting issues. We use the neural network
with architecture 9× 120 for results presented in this subsection.

Next, we compare the predicted values of the stress, plastic strain, and displacement
fields in the domain with a test dataset for Γ̂ = 10−2.5s−1 at 3 different strains i.e. at
Γ = 0.01, 0.02, and 0.04. Figure 3 presents the predicted values of these deformation field
components (left block) along with the FEM reference solution (right block). We can observe
that the predicted values have no visible artifacts and are in great agreement with the FEM
reference results. We also calculate the value of the RMSE e (see (14)) for each output
quantity and report it underneath the corresponding field plot. The small values of e further
confirm our observation that the neural network predictions match the FEM reference results
remarkably well.

Next, we test the predictive capabilities of the trained neural network for values of inputs
that lie outside of the subspace spanned by the training data. Specifically, we calculate the

12



averaged-RMSE (see (15)) E for 7 different strain rate values Γ̂ (s−1) = {10−0.5, 10−.75, 10−1.5,
10−2.5, 10−3.5, 10−4.25, 10−4.5} and multiple strain values in the range [0, 0.08]. We recall that
training data spanned Γ̂ ∈ [10−1, 10−4]s−1 and Γ ∈ [0, 0.04]. Figure 7 shows the variation of
the error E with strain Γ at different strain rates Γ̂ . We make two important observations
from this plot:

1. For the values of strain rate Γ̂ within the training range, the error E is very small
(≈ 1%) upto strain Γ = 0.04. However, in the region Γ ∈ (0.04, 0.08], the error E
steadily increases to ≈ 10%.

2. For values of Γ̂ outside of the training data range, the error E is large at all strains which
implies that the predicted values do not match well with the actual FEM reference data.

Both these observations are consistent with the obtained stress-strain responses plotted
in Figure 5. The stress-strain response (τ vs. Γ) is obtained by plotting the total force on
the top surface divided by its length.

We therefore conclude that a fully connected DNN is successfully able to learn the highly
nonlinear dependence of the deformation fields on the applied strain rate along with their
spatio-temporal evolution. The predictions match remarkably well with the ground truth
reference data for inputs within the training data range. However, as expected, the accuracy
of the predictions degrade for strains and strain rate outside the training data range.

5.2 Temperature dependence

Data collection strategy : To approximate the nonlinear dependence of the (spatio-temporally
varying) deformation fields (stress, plastic strain and displacement) on temperature and
strain, we generate the numerical data at the centroid of each grid element for the following
temperatures (K): {298, 318, 358, 378} at a constant strain rate Γ̂ = 10−1s−1 upto strain
Γ = 0.04. In the similar spirit as before (see Sec. 5.1), the data set is split into 80 : 20 : 0
ratio for training, validation, and test purposes. Test dataset size is set to zero as the model
testing will be performed separately for several temperatures T that are different from those
used during model training.

As before, we first conduct a study to gain insight into the effect of Nl and Nn on the
composite loss L and train the six aforementioned neural network architectures (see Sec. 5.1).
Figure 8 presents the training history for each of these architectures which shows similar trend
as in Figure 4. Therefore, we use the neural network with architecture 9 × 120 for results
presented in this subsection.

Next, we compare the predicted values of the stress, plastic strain, and displacement fields
in the domain with a test dataset for T = 328K at 3 different strains i.e. at Γ = 0.01, 0.02,
and 0.04. Figure 3 presents the predicted values of these deformation field components (left
block) along with the FEM reference solution (right block). We can observe that the error e
(see (14)) has small values and the predictions are in great agreement with the FEM reference
results.

13



Γ = 0.01 Γ = 0.02 Γ = 0.04 Γ = 0.01 Γ = 0.02 Γ = 0.04

Figure 6: Comparison of the results obtained from physics-informed neural network model
(left block) and the ground truth reference data (right block) for T = 328K.

Figure 9 shows the variation of the error E with strain Γ for different temperatures. We
note that the error rises to ≥ 10% as the strains go beyond the training data range. On the
other hand, for values of temperature outside the training data range, the errors are still

14



Figure 7: Variation of error E with strain Γ
for different strain rates in and outside of the
training data range.

Figure 8: Comparison of the composite loss
L for different neural network architectures
(Nl×Nn). Nl and Nn denotes the number of
layers and number of nodels per layer, repec-
tively.

Figure 9: Variation of error E with strain Γ
for different temperatures in and outside of
the training data range.

Figure 10: Stress-strain responses for differ-
ent temperatures in and outside of the train-
ing data range.

< 10% which is in contrast with the error trend observed in Figure 7 when strain-rate Γ̂
was outside the training data range. The stress-strain response plotted in Figure 10 further
confirm these observations.

We therefore conclude that a fully connected neural network is successfully able to learn
the nonlinear dependence of the deformation field on the temperature along with their spatio-
temporal evolution.

6 Conclusion

This work demonstrates the strength of physics-informed neural networks in the context
of problems dealing with the evolution of highly nonlinear deformation field in elastic-
viscoplastic materials under monotonous loading. In particular, we trained specific physics-
informed neural networks and applied them to two test cases of modeling the spatio-temporally
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varying deformation in elastic-viscoplastic materials at different strain rates, and tempera-
tures, respectively. We obtained results that are in great agreement with the ground truth
reference data for both the test cases discussed in this work.

This work also discusses the construction of composite loss function, comprising the data
loss component and physics-based loss components, in great detail. We also discuss a novel
physics-based strategy for evaluation of nondimensional scalar constants that weigh each
component in the physics-based loss function without any added computational complexity.
Moreover, a novel loss criterion for residual calculation corresponding to plastic strain rate
equation is proposed to alleviate issues related to unbalanced back-propagated (exploding)
gradients during model training.

We also highlighted a fundamental challenge involving selection of appropriate model
outputs so that the mechanical problem can be faithfully solved using neural networks. We
present and compare two potential choice of outputs for the model in Appendix A and
present detailed reasoning for preferring one choice over the other. The real-time stress
field prediction in such highly nonlinear mechanical system paves the way for many new
applications, such as design and optimization of lithium ion batteries or inverse modeling
problems which were previously computationally intractable.

Future work will also focus on extending the framework to account for the path de-
pendency of the loading by using recurrent architectures such as long short-term memory
(LSTM) [42] and gated recurrent unit (GRU) [41] to detect history-dependent features. It
would also be interesting to investigate the effect of enforcing boundary conditions in a hard
manner [57] in the current framework.

Appendix A Comparison between two models

This section compares the results obtained from two PINN models a) Model I with dis-
placement, stress, plastic strain, and strength (u,σ, εp, S) as outputs and b) Model II with
displacement, plastic strain, and stress (u, εp, S) as outputs. For Model II, the physics-based
loss Lphy is obtained from the set of equations (12) with the following important changes: i)
The stress is directly calculated from the displacements and plastic strains which are out-
puts of the neural network, i.e. σ = C : (∇u − εp). This implicitly leads to satisfaction of
constitutive law so the loss component Lc is ignored. ii) The data loss Ldata is also modified
to account for the current model outputs.

The study conducted here corresponds to case I: Understanding the effect of strain rate
on the spatio-temporal evolution of deformation in an elastic-viscoplastic material. The
learning rate for Model II is taken to be 10−4 while keeping the collocation points and all
other hyperparameters the same for both the architectures as described in Section 5.1.

The convergence of the training loss for both the models is presented in Fig. 11. It can be
seen that loss reaches a stagnation value of ≈1.9 for model II at around 3000 epochs which is
approximately hundred times larger than the converged loss value obtained for model I. We
can conclude that model I does not suffer from any such degraded accuracy or convergence
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Figure 11: Comparison of training history for Model I and II differing only in the model
outputs.

issue as indicated by Figure 11. This result is an extension of the similar observation for
the purely linear elastic calculations presented in [57] to the general elastic-plastic modeling
case discussed here.

While the exact reasons for such a behavior are still unclear, we highlight the main
differences between the two models. First, the stress calculated in model II is sensitive to
the noise in the gradients of u. Second, we note that highest order of the spatial derivatives
occurring in the composite loss function is one and two for models I and II, respectively.
Moreover, in elastic/elastic-plastic deformations the order of displacement field magnitudes
in the x1 and x2 direction can be vastly different because of the loading setup and Poisson’s
effect. We believe that these factors combine together to give rise to convergence issue and
degraded accuracy when using model II. The use of improved training technique [58], which
also approximates target derivatives along with target values, may alleviate these issues for
model II but that may involve added computational complexity and remains the subject of
future investigation.
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Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[19] François Chollet et al. Keras. https://keras.io, 2015.

[20] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathemat-
ics of control, signals and systems, 2(4):303–314, 1989.

[21] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks
for solving ordinary and partial differential equations. IEEE transactions on neural
networks, 9(5):987–1000, 1998.

[22] Isaac E Lagaris, Aristidis C Likas, and Dimitris G Papageorgiou. Neural-network meth-
ods for boundary value problems with irregular boundaries. IEEE Transactions on
Neural Networks, 11(5):1041–1049, 2000.

[23] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep
learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv
preprint arXiv:1711.10561, 2017.

[24] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational Physics, 378:686–707,
2019.

[25] Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid
flows based on physics-constrained deep learning without simulation data. Computer
Methods in Applied Mechanics and Engineering, 361:112732, 2020.

19

https://keras.io


[26] Chengping Rao, Hao Sun, and Yang Liu. Physics-informed deep learning for incom-
pressible laminar flows. Theoretical and Applied Mechanics Letters, 10(3):207–212, 2020.

[27] Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. Nsfnets (navier-stokes
flow nets): Physics-informed neural networks for the incompressible navier-stokes equa-
tions. Journal of Computational Physics, 426:109951, 2021.

[28] Han Gao, Luning Sun, and Jian-Xun Wang. Phygeonet: Physics-informed geometry-
adaptive convolutional neural networks for solving parametric pdes on irregular domain.
arXiv e-prints, pages arXiv–2004, 2020.

[29] Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R Witschey, John A Detre, and
Paris Perdikaris. Machine learning in cardiovascular flows modeling: Predicting arte-
rial blood pressure from non-invasive 4d flow mri data using physics-informed neural
networks. Computer Methods in Applied Mechanics and Engineering, 358:112623, 2020.

[30] Francisco Sahli Costabal, Yibo Yang, Paris Perdikaris, Daniel E Hurtado, and Ellen
Kuhl. Physics-informed neural networks for cardiac activation mapping. Frontiers in
Physics, 8:42, 2020.

[31] Ari Frankel, Kousuke Tachida, and Reese Jones. Prediction of the evolution of the
stress field of polycrystals undergoing elastic-plastic deformation with a hybrid neural
network model. Machine Learning: Science and Technology, 1(3), July 2020.

[32] Ramakrishna Tipireddy, Paris Perdikaris, Panos Stinis, and Alexandre Tartakovsky. A
comparative study of physics-informed neural network models for learning unknown
dynamics and constitutive relations. arXiv preprint arXiv:1904.04058, 2019.

[33] Enrui Zhang, Minglang Yin, and George Em Karniadakis. Physics-informed neural net-
works for nonhomogeneous material identification in elasticity imaging. arXiv preprint
arXiv:2009.04525, 2020.

[34] Xuhui Meng and George Em Karniadakis. A composite neural network that learns from
multi-fidelity data: Application to function approximation and inverse pde problems.
Journal of Computational Physics, 401:109020, 2020.

[35] Qiming Zhu, Zeliang Liu, and Jinhui Yan. Machine learning for metal additive manu-
facturing: predicting temperature and melt pool fluid dynamics using physics-informed
neural networks. Computational Mechanics, 67(2):619–635, 2021.

[36] Rajat Arora. Machine learning-accelerated computational solid mechanics: Application
to linear elasticity. arXiv preprint arXiv:2112.08676, 2021.

[37] Daniele Versino, Alberto Tonda, and Curt A Bronkhorst. Data driven modeling of plas-
tic deformation. Computer Methods in Applied Mechanics and Engineering, 318:981–
1004, 2017.

20



[38] Zhiyong Li, Huaibao Zhang, Sean CC Bailey, Jesse B Hoagg, and Alexandre Martin.
A data-driven adaptive reynolds-averaged navier–stokes k–ω model for turbulent flow.
Journal of Computational Physics, 345:111–131, 2017.
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