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Abstract

We develop and demonstrate the first general computational tool for finite deformation
static and dynamic dislocation mechanics. A finite element formulation of finite de-
formation (Mesoscale) Field Dislocation Mechanics theory is presented. The model is
a minimal enhancement of classical crystal/J2 plasticity that fundamentally accounts
for polar/excess dislocations at the mesoscale. It has the ability to compute the static
and dynamic finite deformation stress fields of arbitrary (evolving) dislocation distribu-
tions in finite bodies of arbitrary shape and elastic anisotropy under general boundary
conditions. This capability is used to present a comparison of the static stress fields,
at finite and small deformations, for screw and edge dislocations, revealing heretofore
unexpected differences. The computational framework is verified against the sharply
contrasting predictions of geometrically linear and nonlinear theories for the stress field
of a spatially homogeneous dislocation distribution in the body, as well as against other
exact results of the theory. Verification tests of the time-dependent numerics are also
presented. Size effects in crystal and isotropic versions of the theory are shown to be
a natural consequence of the model and are validated against available experimental
data. With inertial effects incorporated, the development of an (asymmetric) propa-
gating Mach cone is demonstrated in the finite deformation theory when a dislocation
moves at speeds greater than the linear elastic shear wave speed of the material.

1 Introduction

Before the advent of the finite element (FE) method, solving boundary value problems of
elasticity theory in any generality, especially for practical purposes of engineering design, was
an essentially impossible task. That state of affairs has significantly changed today, with the
approximation of solutions to complex problems of industrial design having become routine,
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with even robust commercial FE software being available for such tasks. A similar situa-
tion exists today in materials science related to a large class of important problems. Many
materials physics problems in structural and electronic materials demand the comparison
of stress and energy density fields of two (or more) specific defect distributions in an elas-
tically anisotropic, possibly inhomogeneous, body of geometrically complex shape, in order
to determine which may be energetically more favorable and therefore physically observable
(as a first estimate). For example, a first guess at whether dislocation nucleation is possible
or not in a nanostructure may be addressed by computing the total energy content of the
loaded structure without defects at finite deformation, and comparing this energy content
with energy content of the body containing the putative, expected defect configuration to
be nucleated - the Matthews-Blakeslee critical thickness criterion for strained epitaxial het-
erostructures is very much in this spirit. These are problems that involve large elastic strains,
elastic anisotropy and often, inhomogeneity, and finite bodies - and, today, there exists no
general purpose capability to address such questions of design (and theory), taking the bur-
den of creative, ad-hoc, case-by-case approximation off of the analyst and transferring it to
a robust computational capability based on fundamental principles. As part of this paper,
we present such a framework. The presented development can also perform several other
important tasks relevant to the materials science of hard solids (as well as soft, e.g. liquid
crystal elastomers) where defects play an important role.

Conventional elasto-plastic theories model plastic flow through constituitive assumptions
without explicitly recognizing dislocation motion. Owing to the lack of an inherent length
scale, these theories also fail to capture any size dependence in the elasto-plastic response
of (homogeneous) materials. However, it is now well-established through a vast literature,
e.g. [FMAH94, LHT+12, SWBM93, EA66, MC95, SE98] that metals exhibit size effects at
micron to submicron length scales. For example, there is a strong size effect in the mea-
sured indentation hardness of single crystals when the indenter size is below 10 microns
[MC95, SWBM93]. For a given volume fraction of elastic particles in a ductile metal, the
strengthening is greater for smaller particle size [EA66, KN63]. Another example is that un-
der torsional loading of copper wires, the scaled shear strength, as a function of average shear
strain, has been shown to increase by a factor of around 3 as the wire diameter is reduced
from 100 microns to 10 microns [FMAH94, LHT+12], with negligible size effect observed un-
der tensile load. Direct support for the notion that GNDs, so-called geometrically-necessary
dislocations or polar/excess dislocation density at the mesoscale, lead to enhanced hardening
comes from the experiments performed in [RA70]. The prediction of size-dependent behavior
requires the presence of an inherent length scale in the theory based on dimensional grounds.

Beyond hardening in the material, dislocations have also been observed to develop intri-
cate microstructures under the action of their mutual interactions and applied loads such as
dislocation cells [MW76, MAH79, MHS81, HH00] and labyrinths [JW84], often with dipolar
dislocation walls, and mosaics [TCDH95]. The presence of such dislocation microstructures,
in particular their ‘cell size’ and orientations can have a strong influence on the macroscopic
response of materials [HH12, Ree06].

To our knowledge, there is no continuum formulation that takes into account the stress
field of signed dislocation density and its transport at finite deformation and can predict re-

2



alistic microstructure development. Toupin’s couple-stress elasticity theory [Tou62] is com-
putationally implemented within the Isogeometric Analysis method in [WRG16] to compute
the stress fields of static dislocations at finite strains, representing defects by force dipole
distributions. As shown there, the force-dipole representation is ‘non-local’ w.r.t repre-
senting a dislocation line/loop and therefore can become onerous for computing the static
field of a complex network of dislocations as well as its stress-coupled evolution. Computa-
tional implementations of gradient plasticity models at finite deformation of various flavors
[AB00b, APBB04, TCAS04, EBG04, KT08, MRR06, NR04, NT05, LNN19, NT19, EB17,
KM19, LFB+18], including inertia [Kur19], have been developed with the goal of predicting
length-scale effects, with some accounting for some version of dislocation transport; none
of these models, however, can compute the stress field of a specified dislocation distribu-
tion. The use of Discrete Dislocation Dynamics (DD) and Molecular Dynamics to model
elastic-plastic material response and microstructure development at realistic time scales and
mesoscopic length scales is currently an active area of research, as is the development of
continuum scale models that can overcome the limitations of conventional theories – model-
ing size effects, calculating finite deformation stress fields of signed dislocation density, and
predicting (realistic) microstructure in the material. All DD models take the closed-form
stress fields of individual dislocations as input. Current versions of DD accounting for some
features of finite deformation have been reviewed in [AA19] - these models are not capable
of computing the finite deformation stress and energy density fields of dislocation distri-
butions. This paper reports the development of one such model by developing a mechanics
based, novel parallel computational tool to make finite element method based computational
predictions of finite deformation dislocation plasticity.

The current work presents a numerical framework based on Field Dislocation Mechanics
(FDM) theory [Ach01, Ach03, Ach04], an extension of conventional plasticity that exactly
accounts for the finite deformation stress fields of dislocations and their spatio-temporal
evolution, for solving a large class of initial boundary value problems in finite strain dislo-
cation mechanics at microscopic scales. A model for mesoscale plasticity, Mesoscale Field
Dislocation Mechanics (MFDM) [AR06, Ach11], was developed from FDM by elementary
averaging techniques utilized in the study of multiphase flows (see e.g. [Bab97]). This av-
eraging procedure does not provide closure equations, and the resulting structure can be
interpreted, for operational purposes, as the equations of FDM augmented by an extra term.
This term describes the plastic strain rate due to unresolved dislocations and is phenomeno-
logically specified in MFDM. Despite the phenomenology, the averaging procedure and the
fine-scale theory involved impart to the coarse model a rich structure that enables a gamut
of relevant predictions, with only two extra material parameters over and above conventional
macroscopic continuum plasticity.

The finite-element formulation for finite deformation MFDM, presented subsequently, uses
an updated Lagrangian description. The formulation generalizes the FEM implementation
of small deformation MFDM theory developed in [RA05, RA06] to finite deformation. Since
the equations of MFDM are identical to those of FDM except for an additional term in
the plastic strain rate, denoted by Lp, the algorithm and the computational framework for
FDM and MFDM are similar. It adopts the static finite elasticity framework developed in
[Pur09]. The implementation for the evolution problem utilizes an additional equation of
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incremental equilibrium that enables a staggered formulation akin to the small-deformation
formulations [RA05, RA06], thus overcoming the limitations of [Pur09] wherein the numerical
formulation for finite deformation MFDM was first attempted. The formulation presented in
this paper consists of the governing balance of linear momentum equation (and its rate form
for quasi-static and equilibrium problems), a div-curl system for the elastic incompatibility,
an evolution equation for the compatible part of the elastic distortion tensor, and a first-order
wave propagation equation for the evolution of the (spatially averaged) dislocation density,
singularly perturbed by a second order parabolic term. The potential and generality of the
model (both FDM and MFDM) are demonstrated through several illustrative examples.

This paper is organized as follows: after introducing notation and terminology immedi-
ately below, Sec. 2 presents an introduction to the governing equations of finite deformation
MFDM. The details of the finite element discretization of the equations of finite deformation
(M)FDM are then presented in Sec. 3. The staggered computational algorithm for the prob-
lems within the quasi-static and dynamic (with inertia) settings, including time-stepping
criteria, are discussed in Sec. 4. Sec. 5 presents the results that verify and validate the
computational framework.

Notation and terminology

Vectors and tensors are represented by bold face lower and upper-case letters, respectively.
The action of a second order tensor A on a vector b is denoted by Ab. The inner product
of two vectors is denoted by a · b and the inner product of two second order tensors is
denoted by A : B. A superposed dot denotes a material time derivative. A rectangular
Cartesian coordinate system is invoked for ambient space and all (vector) tensor components
are expressed with respect to the basis of this coordinate system. (·),i denotes the partial
derivative of the quantity (·) w.r.t. the xi coordinate direction of this coordinate system.
ei denotes the unit vector in the xi direction. Einstein’s summation convention is always
implied unless mentioned otherwise. All indices span the range 1-3 unless stated otherwise.
The condition that any quantity (scalar, vector, or tensor) a is defined to be b is indicated
by the statement a := b (or b =: a). tr(A) and det(A) denote the trace and the determinant
of the second order tensor A, respectively. The symbol |(·)| represents the magnitude of the
quantity (·). The symbol a en in figures denotes a× 10n.

The current configuration and its external boundary is denoted by Ω and ∂Ω, respectively.
n denotes the unit outward normal field on ∂Ω. The symbols grad, div, and curl denote
the gradient, divergence, and curl on the current configuration. For a second order tensor
A, vectors v, a, and c, and a spatially constant vector field b, the operations of div, curl,
and cross product of a tensor (×) with a vector are defined as follows:

(divA) · b = div(ATb), ∀ b
b · (curlA)c =

[
curl(ATb)

]
· c, ∀ b, c

c · (A× v)a =
[
(ATc)× v

]
· a ∀ a, c.
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In rectangular Cartesian coordinates, these are denoted by

(divA)i = Aij,j,

(curlA)ri = εijkArk,j,

(A× v)ri = εijkArjvk,

where εijk are the components of the third order alternating tensor X. The corresponding
operations on the reference configuration are denoted by the symbols Grad, Div, and Curl.
I is the second order Identity tensor whose components w.r.t. any orthonormal basis are
denoted by δij. The vector X(AB) is defined by

[X(AB)]i = εijkAjrBrk.

The following list describes some of the mathematical symbols we use in this paper.
C : Constant fourth order elasticity tensor assumed to be positive definite on the space of
second order symmetric tensors
E : Young’s modulus
µ: Shear modulus
ν : Poisson’s ratio
Ce : Right Cauchy-Green deformation tensor
I1(C

e) : First invariant of Ce

φ : Elastic energy density of the material
ρ : Mass density of the current configuration
ρ∗ : Mass density of the pure, unstreched lattice
(·)sym : Symmetric part of (·)
m: Material rate sensitivity
γ̂0 : Reference strain rate
γ̂ : Magnitude of SD slipping rate for the J2 plasticity model
γ̂k : Magnitude of SD slipping rate on the kth slip system for the crystal plasticity model
nsl : Number of slip systems
sgn(τ k) : Sign of the scalar τ k

τ k : Resolved shear stress on kth slip system
mk, nk : Slip direction and the slip plane normal for the kth slip system in the current
configuration
mk

0, nk0 : Slip direction and the slip plane normal for the kth slip system in the pure,
unstretched lattice
g0 : Initial material strength
gs : Saturation material strength
g : Material strength
Θ0 : Stage 2 hardening rate
k0 and η : Material constants
ε : Material constant with dimensions of stress× length2
b: Burgers vector magnitude of a full dislocation in the crystalline material
h: Length of the smallest edge of an element in the finite element mesh under consideration.
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2 Theory

This section presents the governing equations, constitutive assumptions, and initial and
boundary conditions of finite deformation Mesoscale Field Dislocation Mechanics, the model
that is computationally implemented and evaluated in this paper. The development of the
relevant field equations is detailed in Appendix A; here we summarize briefly:

α̊ ≡ (div v)α+ α̇−αLT = −curl (α× V +Lp) (1a)

W = χ+ gradf

curlW = curlχ = −α
divχ = 0

}
(1b)

div
(
gradḟ

)
= div (α× V +Lp − χ̇− χL) (1c)

div [T (W )] =

{
0 quasistatic

ρ v̇ dynamic.
(1d)

The upshot of the development in Appendix A is that if Lp = 0 then the system (1)
refers to the governing equations of FDM theory; otherwise, it represents the MFDM model.
FDM applies to understanding the mechanics of small collections of dislocations, resolved
at the scale of individual dislocations. MFDM is a model for mesoscale plasticity with clear
connections to microscopic FDM. The fields involved in the MFDM model are space-time
averaged counterparts of the fields of FDM (42), with Lp being an emergent additional
mesoscale field. In (1), W is the inverse-elastic distortion tensor, χ is the incompatible part
of W , f is the plastic position vector, gradf represents the compatible part of W , α is the
dislocation density tensor, v represents the material velocity field, L = gradv is the velocity
gradient, T is the (symmetric) Cauchy stress tensor, and V is the dislocation velocity field.

2.1 Constitutive equations for T , Lp, and V

MFDM requires constitutive statements for the stress T , the plastic distortion rate Lp, and
the dislocation velocity V . The details of the thermodynamically consistent constitutive
formulations are presented in [AA19, Sec. 3.1]. This constitutive structure is summarized
below.

Table 1 presents the Cauchy stress expressions for the Saint-Venant-Kirchhoff and a com-
pressible Neo-Hookean material. It also presents the assumed constitutive form of the meso-
scopic core energy density (per unit mass) for the material.

Table 2 presents the constitutive assumptions for Lp for Crystal and J2 plasticity models.
Table 3 presents the constitutive assumptions for V for Crystal and J2 plasticity models.
Table 4 presents the governing equation for the evolution of material strength g for the two
models. The use of γ̂sd in (11) stems from the fact that isotropic (or Taylor) hardening is
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Saint-Venant-
Kirchhoff Material φ(W ) =

1

2ρ∗
Ee : C : Ee T = F e [C : Ee]F eT (2)

Neo-Hookean Ma-
terial φ(W ) =

µ

2ρ∗
(I1(C

e)− ln (det(Ce))) T = µ(F eF eT − I) (3)

Core energy den-
sity

Υ (α) :=
1

2ρ∗
εα : α

Table 1: Constitutive choices for elastic energy density, Cauchy stress, and core energy
density.

L̂p = W

(
nsl∑
k

γ̂kmk ⊗ nk
)
sym

(4)

Lp = L̂p +

(
l2

nsl

nsl∑
k

|γ̂k|

)
curlα (5)

γ̂k = sgn(τ k) γ̂0
k

(
|τ k|
g

) 1
m

(6)

Crystal plasticity

τ k = mk · Tnk; mk = F emk
0; nk = F e−Tnk0

J2 plasticity

L̂p = γ̂W
T
′

|T ′ |
; γ̂ = γ̂0

(
|T ′|√

2 g

) 1
m

Lp = L̂p + l2γ̂ curlα (7)

Table 2: Constitutive choices for plastic strain rate due to SDs Lp.
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T ′ij = Tij −
Tmm

3
δij; ai :=

1

3
TmmεijkF

e
jpαpk; ci := εijkT

′
jrF

e
rpαpk

d = c−
(
c · a
|a|

)
a

|a|
; γ̂avg =

γ̂ J2 plasticity
1

nsl

∑nsl

k |γ̂k| Crystal plasticity.

V = ζ
d

|d|
; ζ =

(
µ

g

)2

η2 b γ̂avg (8)

Table 3: Constitutive choices for dislocation velocity V .

γ̂sd =

{
γ̂ J2 plasticity∑nsl

k |γ̂k| Crystal plasticity.
(10)

ġ = h(α, g) (|F eα× V |+ γ̂sd) ; h(α, g) =
µ2η2b

2(g − g0)
k0 |α|+Θ0

(
gs − g
gs − g0

)
(11)

Table 4: Evolution equation for material strength g.

used for the evolution of strength on every slip system with equal initial values, i.e.,

γ̂k = sgn(τ k) γ̂0
k

(
|τ k|
gk

) 1
m

, k = 1, . . . , nsl

ġkj = h(α, g)

(
|F eα× V |+

nsl∑
j=1

[q + (1− q)δkj]
∣∣γ̂j∣∣) , 1 ≤ q ≤ 1.4, k, j = 1, . . . , nsl,

(9)

where the function h is defined in (11) and (9) is a simple modification of standard la-
tent hardening phenomenology assumed in classical crystal plasticity (see, e.g., [PAN83]).
Isotropic hardening is not a necessary condition for the formulation.

All material parameters, except k0 and l, are part of the constitutive structure of well-
accepted models of classical plasticity theory. Our model requires these two extra material
parameters beyond the requirements of classical theory. l (with physical dimensions of
length) sets the length scale for the mesoscopic core energy to be effective, and k0 (non-
dimensional) characterizes the plastic flow resistance due to ED.

We mention here that the length scale l, introduced in Eq. (5) or (7) as a dimensional
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consequence of including the core energy, is not responsible for producing enhanced size
effects and microstructure in MFDM. Rather, the ‘smaller is harder’ size effect decreases
with increasing magnitude of l since its presence reduces the magnitude of the α field and
consequently reduces hardening (11).

2.2 Boundary Conditions

The α evolution equation (1a), the incompatibility equation for χ (1b), the f evolution
equation (1c), and the equilibrium equation (1d) require specification of boundary conditions
at all times.

The α evolution equation (1a) admits a ‘convective’ boundary condition of the form
(α × V + Lp) × n = Φ where Φ is a second order tensor valued function of time and
position on the boundary characterizing the flux of dislocations at the surface, satisfying the
constraint Φn = 0. The boundary condition is specified in one of following two ways:

• Constrained case: It is modeled by taking Φ to be identically zero on the boundary
at all times i.e. Φ(x, t) = 0. This makes the body plastically constrained on the
boundaries which means the dislocations cannot exit the body while only being allowed
to move in the tangential direction at the external boundary. It is also referred to as
the no-slip or plastically rigid boundary condition.

• Unconstrained case: A less restrictive boundary condition where L̂p×n is specified on
the boundary, along with the specification of dislocation flux α(V · n) on the inflow
part of the boundary (where V · n < 0) can also be used. In addition to this, for
non-zero l, specification of l2γ̂sd(curlα × n) on the boundary is also required, where
γ̂sd is defined in Eq.(10).

Incompatibility equation (1b) admits a boundary condition of the form

χn = 0

on the external boundary ∂Ω of the domain. Such a boundary condition along with the
system (1b) ensures vanishing of χ in the absence of any dislocation density α. f evolution
equation (1c) requires a Neumann boundary condition of the form

(gradḟ)n = (α× V +Lp − χ̇− χL)n

on the external boundary of the domain. The equilibrium equation (1d) requires specification
of standard displacement/velocity and/or statically admissible tractions on complementary
parts of the boundary of the domain.

2.3 Initial Conditions

The evolution equations for α and f (Eqs. (1a) and (1c), respectively) require specification
of initial condition on the domain.
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For α equation, an initial condition of the form α(x, t = 0) = α0(x) is required. To
determine the initial the initial condition on f , the problem can be more generally posed
as follows: determine the f and T fields on a given configuration with a known dislocation
density α. This problem can be solved by solving for χ from the incompatibility equation
and then f from the equilibrium equation as described by the system

curlχ = −α
divχ = 0

div [T (f ,χ)] = 0

 on Ω (12)

χn = 0

Tn = t

}
on ∂Ω (13)

where t denotes the statically admissible traction field on the boundary. This determination
of χ, f , and T for a given dislocation density α on any known configuration will be referred
to as the ECDD solve on that configuration. Hence, we do the ECDD solve on the ‘as-
received’ configuration, i.e. the current configuration at t = 0, to determine the initial value
of f which also determines the stress T distribution at t = 0. For the dynamic case, an
initial condition on material velocity field v(x, t = 0) is required.

The model admits an arbitrary specification of ḟ at a point to uniquely evolve f from
Eq. (1c) in time and we prescribe it to be ḟ = 0.

3 Variational formulations

This section presents the weak form of the governing equations of MFDM at finite deforma-
tion for the quasistatic and dynamic cases. The algorithms summarizing the implementation
are then presented in Sec. 4.

Modeling material behavior through the use of MFDM requires the concurrent solution
to a coupled nonlinear system of pdes given by (1). To efficiently solve the system for the
quasistatic case within a staggered scheme in each time increment as in [RA05, RA06] in the
small deformation case, we augment the system (1) with the rate (or incremental) form of
the equilibrium equation. This rate form is solved to get the material velocity field v on the
domain which can be used to (discretely) update the geometry of the body. In the absence
of body forces and inertia, the statement of local force balance (on the current configuration)
w.r.t. any choice of reference configuration can be expressed by

DivP = 0, (14)

where P represents the first Piola-Kirchhoff stress w.r.t. that reference. This implies

˙DivP = 0 ; Div
[
J tr(L)TF−T + JṪ F−T + JT

˙
F−T

]
= 0,

where J = det(F ) and choosing the reference configuration to be the current one i.e. F = I,
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one obtains [MR75]

div
[
tr(L)T + Ṫ − TLT

]
= 0. (15)

The system (1) is then augmented with Eq. (15) for the quasistatic case. For the dynamic
case, the balance of linear momentum can be solved directly to give the material velocity
field on the domain.

The discretization methods for solving the equations for the finite deformation MFDM
(1) are similar to the small deformation case as presented earlier in [RA05, RA06]. The
following numerical schemes are used: the Galerkin FEM for the equilibrium equation (1d)
and its rate form (15), and evolution equation (1c) for the compatible part of inverse of
elastic distortion; the Least-squares FEM [Jia13] for the incompatibility equation (1b); and
the Galerkin-Least-Squares FEM [HFH89] for the dislocation evolution equation (1a). Apart
from the changes due to finite deformation, primary changes include the protocols needed
to carefully integrate incremental reaction force rates, corresponding to imposed velocity-
Dirichlet b.c.s, to obtain consistent traction b.cs. (in the weak form) for balance of linear
momentum in the quasistatic case. The (finite element) mesh motion is also taken into
account.

The FEM based computational framework for MFDM results in a total of 10 and 24
degrees of freedom (DOFs) per node for a simulation in 2-d and 3-d, respectively. In 2-d,
this includes 2 unknowns in α (α13 and α23), 4 in χ (χ11, χ12, χ21, χ22), and 2 each in v and
f . However, given the staggered nature of the algorithm, the largest linear system to be
solved consists of 4 and 9 dofs per node in 2-d and 3-d, respectively.

The FEM formulation and algorithm presented here are independent of the constitutive
choices made for Lp, V , and T . We now discuss the numerical schemes to solve the governing
equations. A typical time increment between times tn to tn+1 is considered. (·)n and (·)n+1

denote the quantity (·) at time tn and tn+1, respectively. ∆tn is defined as ∆tn = tn+1 − tn.

3.1 Weak form for v

The material velocity field v is required to update the geometry discretely by moving the
finite element mesh. For the quasistatic case, v is obtained by solving the rate form of
equilibrium equation (15) while for the dynamic case, it is obtained by solving the balance
of linear momentum equation (1d)2.

3.1.1 Quasistatic case

We solve the rate form of the equilibrium equation to obtain the material velocity field v on
the current configuration Ω following the assumed strain formulation of [NPR74]. We define
δL̄ to be

δL̄(x) := gradδv(x)− 1

3
divδv(x)I +

1

3 |B(x)|

∫
B(x)

I divδv dV,
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where B(x) represents the element (in mesh) containing the point x and |B(x)| is the volume
of the element B. The weak form is then written as∫

Ω

δL̄ :
[
divv T + Ṫ − T L̄T

]
dV =

∫
∂Ω

δv · ṫ dA.

where

L̄(x) := L(x)− 1

3
div v(x)I +

1

3V (x)

∫
B(x)

I div v(x) dV

and ṫ is the specified Neumann boundary condition of nominal traction rate based on the
current configuration as the reference. Using the evolution equation (43)1 for W and the
identity F eW = I, the material time derivative of T is calculated as

Ṫ =

(
∂T

∂F e

)
: (L− (F eα)× V − F eLp)F e.

The calculation of ∂T
∂F e for the Saint-Venant-Kirchhoff and the Neo-Hookean materials are

shown in Appendices B.1 and B.2, respectively. Using the expression for Ṫ , the weak form
of Eq. (15) is expressed as∫

Ω

δ L̄ :

[
tr(L̄)T − T L̄T +

∂T

∂F e
: (L̄ · F e)

]
dV =

∫
Ω

δ L̄ :

[
∂T

∂F e
: ((F eα)× V )F e

]
dV

+

∫
Ω

δ L̄ :

[
∂T

∂F e
: (F eLpF e)

]
dV

+

∫
∂Ω

δv̄ · ṫ dA.

(16)

The underlined terms denote the contribution of the plastic strain rate to the Cauchy
stress rate in the body and Eq. (16) shows their effect as a forcing term in the determination
of material velocity field on the body. For a given state of the system (T n,F e,n,Lp,n,αn,xn,
and V n) at time tn, the weak form generates a system of linear equations which is then
solved to get the velocity field vn on the configuration Ωn.

On part of the boundary where Dirichlet conditions on the velocity are applied, the nodal
reaction force rates at time tn are calculated after solving (16) on the configuration Ωn.
For a finite element mesh node A on the velocity-Dirichlet part of the boundary, the nodal
reaction force rate corresponding to the degree of freedom pair {(A, a)} is expressed as

T̂Aa =

∫
Ω

(
∂NA

∂xj
Paj −

Pii

3

∂NA

∂xa
+

Pii

3|B(x)|

∫
B(x)

∂NA

∂xa
dV

)
dV, (17)

where PPP denotes the first Piola-Kirchhoff traction rate (evaluated on the assumed strain
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velocity gradient) given by

PPP = tr(L̄)T − T L̄T +
∂T

∂F e
:
[
L̄ · F e − (F eα× V )F e − F eLpF e

]
.

For each node on this part of the boundary, this reaction force rate physically corresponds
to the spatial integration of the nominal/First Piola-Kirchhoff traction rate, based on the
configuration Ωn as reference, over the area patch (on the same configuration) that con-
tributes to the node in question. Since such a nodal force rate, viewed as a discrete function
of time, corresponds to the evolving current configuration of the body (recall the definition
of the First Piola-Kirchhoff stress tensor), we simply (discretely) integrate it in time and
accumulate the result on the known nodal force at time tn to obtain the nodal force (on the
velocity-Dirichlet-part of the boundary) at time tn+1. On the part of the boundary where
Cauchy tractions are specified (including null), nothing needs to be done.

3.1.2 Dynamic case

For the dynamic case, the balance of linear momentum equation is directly solved to obtain
the velocity on the given configuration. Assuming the stresses and material velocity on the
current configuration Ωn are given, we solve for vn+1 using the Forward Euler method as
follows:

∫
Ωn

ρ vn+1
i δvi dV =

∫
Ωn

ρ vni δvi dV +∆tn
(∫

∂Ωn

tiδvi dA−
∫
Ωn

Tijδvi,j dV

)
. (18)

3.2 Weak form for χ

For a given dislocation density α and a configuration of the body Ω, χ is evaluated by
solving the system (1b) along with the Dirichlet boundary conditions mentioned in Sec. 2.2.
We use the Least-Squares finite element method to solve for χ from the div-curl system
(1b). The objective functional J for this system is written as

J =
1

2

∫
Ω

(curlχ+α) : (curlχ+α) dV +
1

2

∫
Ω

divχ · divχ dV,

resulting in the weak form∫
Ω

eijkδχrk,j (eimnχrn,m + αri) dV +

∫
Ω

δχij,jχim,m dV = 0. (19)

The above system of linear equations can be easily solved to obtain χ on a given config-
uration Ω for a given dislocation density.
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3.3 Weak form for α

The transport equation for α (1a) exhibits nonlinear wave type solutions. In the presence
of a non-zero core energy Υ (α), the dislocation evolution equation is singularly perturbed
by a second order parabolic term which behaves as a small diffusive term leading to a con-
vection–diffusion equation. Following [RA05, RA06], we adopt the Galerkin-Least-Squares
FEM approach as described in [HFH89] wherein the Galerkin residual is added to a non-
negative (may be spatially varying) scalar multiple of the least squares residual. Writing
Lp = L̂p + β curlα, (1a) can be rewritten as

tr(L)α+ α̇−αLT = −curl
(
α× V + L̂p + βcurlα

)
. (20)

Using a linearly implicit scheme, the Galerkin-Least-Squares residual for Eq. (20) can be
written as

R =

∫
Ωn

δαij (∆tn Lppαij −∆tn αipLjp) dV +

∫
Ωn

δαij
(
αij − αnij

)
dV

+∆tn
∫
Ωn

εjqp εjabαiaVbδαip,q dV

+∆tn
∫
Ωn

L̂pijεjqpδαip,q dV +∆tn
∫
Ωn

βεjabαib,aεjqpδαip,q dV

+∆tn
∫
∂Ωn

i

Bijδαij dA+∆tn
∫
∂Ωn

o

αnijVpnpδαij dA−∆tn
∫
∂Ωn

αiqVjnqδαij dA

−∆tn
∫
∂Ωn

εjpqL̂
p
ipnqδαij dA−∆tn

∫
∂Ωn

βεjpqεpbaαia,bnqδαij dA

+ c

[∫
Ωn

e

Ariδαri dV +∆tn
∫
Ωn

e

LppAriδαri dV −∆tn
∫
Ωn

e

AriδαrpLip dV

+∆tn
∫
Ωn

e

Ari (δαri,qVq − δαrq,qVi + δαriVq,q − δαrqVi,q) dV

+∆tn
∫
Ωn

e

Ari(β,pδαrp,i + βδαrp,ip − β,pδαri,p − βδαri,pp) dV
]
,

(21)

where

Ari = αri − αnri +∆tn
[
αnriLpp − αnrpLip + αnri,qVq − αnrq,qVi + αnriVq,q − αnrqVi,q + εipqL̂

p
rq,p+

+β,pα
n
rp,i + βαnrp,ip − β,pαnri,p − βαnri,pp

]
.

In (21), no superscript on α refers to αn+1. L, V , and L̂p are treated as known data. ∂Ωn
i

and ∂Ωn
o represent the inflow and outflow parts of the boundary ∂Ωn. B is the input dislo-

cation flux α(V ·n) on ∂Ωn. Ωn
e denotes the element interiors. The terms underlined in blue

above are the additional terms that enter the discretization for the dislocation density evo-
lution in the finite deformation setting. We ignore the gradients of β in in the Least-Squares
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stabilization Eq. (21) as including these terms was found to degrade the computational ap-
proximation in our practical experience. c is the non-negative (possibly spatially varying)
scalar that takes the value 1 in the convection dominated regions and is equal to the grid
Péclet number in diffusion dominated regions. Since we take l (see Eqs. (5) and (7)) to be
very small, we choose c = 1 for MFDM calculations, unless stated otherwise.

3.4 Weak form for f

For the dynamic and the quasistatic cases, f is determined in the domain at any time t by
evolving equation (1c) in time. However, since we solve the rate form of the equilibrium
equation (15) to generate the current configuration at discrete times, the discretely evolving
f and χ fields generate a stress field that may not satisfy discrete force balance on the
current configuration. To correct for this, we periodically (see Table 5) solve the equilibrium
equation (1d) to satisfy balance of forces which is now posed as a traction boundary value
problem, with the boundary data implemented in the form of nodal reaction forces which
are obtained by integrating the nodal reaction force rate as mentioned in Sec. 3.1.1 (see
the discussion surrounding Eq. (17)) and minimal kinematic constraints to eliminate rigid
deformation modes. Solving the equilibrium equation on a given configuration amounts to
adjustment of the solution for f obtained by solving Eq. (22) as detailed in Sec. 3.4.2.2
below.

3.4.1 Evolution of f

The evolution equation (1c) for f is solved on the current configuration at each time step
with the natural b.c.s defined in Sec. 2.2 imposed on the external boundary. Letting Y =
(α× V + Lp − χ̇− χL) and using a forward Euler scheme to update f , the weak form of
(1c) is∫

Ωn

gradfn+1 : grad δf dV = ∆tn
∫
Ωn

Y n : grad δf dV +

∫
Ωn

gradfn : grad δf dV. (22)

The weak form implies the satisfaction of the natural boundary conditions as mentioned in
Sec. 2.2. We specify fn+1 (equivalent to ḟ = 0) at an arbitrary point at all times to ensure
a unique solution, without loss of generality.

3.4.2 Adjusting f from equilibrium equation

At small deformation, the equilibrium equation is linear in f and can be solved in a single
iteration. However, it is nonlinear in f at finite deformation and therefore Newton-Raphson
technique is used to solve for f at finite deformation. Here, we present the weak form for
both the cases i) small deformation and ii) finite deformation. After f is determined, the
stress for Saint-Venant-Kirchhoff and Neo-Hookean materials are given by Eqs. (3) and (2),
respectively.
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3.4.2.1 Small deformation

For the linear theory, W ≈ I −U e where U e = gradz − χ and curlW = −curlU e = −α.
This implies

W ≈ I −U e

gradf + χ ≈ gradx− gradz + χ

=⇒ f ≈ x− z (upto a constant) (23)

where x represents the points in the current configuration. At small deformation, the stress
is a linear function of gradz which is related to gradf as shown in Eq. (23). Once χ is known,
the residual for the equilibrium equation in the absence of body forces [RA05, ZAP18] is
given as

R(z) =

∫
∂Ω

ti δzi dA−
∫
Ω

Tijδzi,j dV. (24)

The Jacobian of the system is calculated by taking a variation of the residual (24) in the
direction dz. For finite element mesh nodes A and B, the discrete form of the Jacobian
matrix corresponding to the degree of freedom pair {(A, a), (B, b)} is expressed as

JABab = −
∫
Ω

∂NA

∂xj

∂Taj
∂(gradz)bc

∂NB

∂xc
dV.

The calculation of ∂T
∂(gradz)

for the Saint-Venant-Kirchhoff and the Neo-Hookean materials is
shown in Sections C.1 and C.2 respectively. After solving for z, f can be updated following
the relation from Eq. (23).

3.4.2.2 Large deformation

We use the Newton-Raphson scheme to solve for f at large deformation as the governing
equation div[T (f ,χ)] = 0 is nonlinear in f . Following the scheme outlined in [Pur09], we
write the residual from the variational statement for (1d)1

R(f) =

∫
∂Ω

tiδfi dA−
∫
Ω

Tijδfi,j dV. (25)

The discrete form of the Jacobian matrix corresponding to the degree of freedom pair
{(A, a), (B, b)} is expressed as

JABab = −
∫
Ω

∂NA

∂xj

∂Taj
∂F e

mn

∂F e
mn

∂Wbc

∂NB

∂xc
dV.

The calculation of ∂T
∂F e for the Saint-Venant-Kirchhoff and the Neo-Hookean materials is

shown in Appendices B.1 and B.2, respectively. The guess for this Newton-Raphson solve is
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crucial for success in solving for f . We denote this guess as f0 and it is determined, following
[ZAP18], as follows:

• For ECDD solves (t = 0), f0 is obtained by solving the equilibrium equation on the
current configuration by assuming small deformation as shown above in Sec. 3.4.2.1.

• At any other time (t > 0), fn+1 obtained by solving the evolution equation (22) serves
as the guess f0 for the Newton-Raphson based scheme.

The nonlinear system is then iteratively solved until the norm of the discrete residual |RA
a |

is less than a tolerance of 10−12 g0 h
2 (in 2-d), where h denotes the length of the smallest

edge of an element in the finite element mesh.

4 Algorithms

We choose a combination of explicit-implicit schemes to evolve the coupled system (Eqs. (16),
(19), (20), (22)) in time. An efficient time stepping criteria based on plastic relaxation,
and purely elastic and ‘yield strain’ related physical model parameters has been developed.
Furthermore, to ensure robust and stable evolution of state variables, an intricate cut-back
algorithm is used that carefully controls the magnitude of plastic strain in each increment.

The following notation is used for the description of the algorithm:

1. (·)n means a quantity at time tn. xn represents the coordinates of the finite element
mesh on the configuration Ωn.

2. At any integration point q, the following state variables are stored at any given time
tn: material strength gn, elastic distortion tensor F en, Cauchy stress T n, dislocation
velocity V n, slip distortion rate Lpn. We will collectively refer to them as PHn (short
for point history) of integration points.

3. ∆tn is defined as tn+1 − tn. To evaluate ∆tn we first calculate the following variables
at each time-step

∆t1 =
ξ h

max(|V n|)

∆t2 =
.002

max(|F enαn × V n|) + max(γ̂nsd)

∆t3 =
ξ g0

E max(|Ln|)

∆t4 =
ξ h

vs

17



where max(·) denotes the maximum of the quantity (·) over all integration points in the
domain, h denotes the length of the smallest edge of an element in the finite element
mesh, vs is the shear wave speed of the material, and ξ is a scalar currently chosen to
be 0.1.

∆t1 and ∆t4 relate to the Courant conditions for numerical stability related to dislo-
cation motion and elastic wave propagation (in the dynamic case), respectively; their
specifications above enforce that the respective waves are allowed to propagate a frac-
tion of h in any given time step. ∆t2 ensures that the maximum plastic strain increment
at any given point in a time step has an upper bound of 0.2%. ∆t3 puts a bound on
the maximum strain increment that can be attained in a time step at any point in the
domain. The diffusive term in Eq. (21) is treated implicitly and therefore it does not
pose any restriction on the time step selection criteria. ∆tn is then given as

∆tn =

{
min (∆t1, ∆t2, ∆t3) Quasistatic case

min (∆t1, ∆t2, ∆t3, ∆t4) Dynamic case
(26)

The algorithms for the quasistatic and dynamic cases are shown in Tables 5 and 6, re-
spectively.

4.1 Quasistatic case

Given: material properties, initial conditions, boundary conditions, and applied loading
conditions.

Step 1: Finding the initial stress field on the body in ‘as-received’ configuration - ECDD
solve.

• ECDD solve, mentioned in Sec. 2.3, is done on the initial configuration, i.e. current
configuration at t = 0.

• This gives f , χ, and T on the configuration of the body at t = 0.
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Step 2: Evolution of the system: Assume that the state at time tn is known: xn, αn,
fn, χn, χ̇n, V n, Lp, ∆tn, PHn

To get the state at time step tn+1 the following is done:

• The rate form of the equilibrium equation (15) is solved on Ωn to get the material
velocity vn using Eq. (16).

• Weak form of α evolution equation (21) is solved on Ωn to obtain αn+1 on Ωn+1.

• The configuration of the body is discretely updated i.e. xn+1 = xn + vn∆tn.

• χn+1 on Ωn+1 is obtained by solving Eq. (19) on Ωn+1.

• fn+1 on Ωn+1 is obtained by doing one of the following:

1. Solve Eq. (22) on Ωn to obtain fn+1.

2. Solve equilibrium equation (1d) in alternate increments to adjust fn+1 on Ωn+1

as shown in Eq. (25). fn+1 obtained by solving Eq. (22) serves as the initial
guess for the Newton Raphson scheme.

• χ̇n+1 is calculated as follows: χ̇n+1 =
χn+1 − χn

∆tn
.

• PHn+1 is updated on the configuration Ωn+1.

State acceptance criteria: Let PSR = (max(|F eα× V |n+1) + max(γ̂n+1
sd )). If PSR ×

∆tn ≤ 0.002, the state is accepted. ∆tn+1, based on the new state, is calculated from
(26) and this algorithm is repeated to get state at increment tn+2. If the condition is not
satisfied:

• Go back to the state at time tn.

• Use ∆tn,new = min
(
0.002
PSR

, 0.5∆tn
)

and repeat the algorithm to obtain a new state
at tn+1.

Table 5: Quasi-static MFDM algorithm.

4.2 Dynamic case

Given: material properties, initial conditions, boundary conditions, and applied loading
conditions.

Step 1: ECDD solve as outlined in the Table 5 is done on the initial configuration,
i.e. current configuration at t = 0, to determine f , χ, and T at t = 0.

Step 2: Evolution of the system: Assume that vn−1 and the state at time tn is known:
xn, αn, fn, χn, χ̇n, V n, Lp, ∆tn, PHn
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To get the state at time step tn+1 the following is done:

• The balance of linear momentum Eq. (15) is solved on Ωn to get the material
velocity vn using Eq. (18).

• Weak form of α evolution equation (21) is solved on Ωn to obtain αn+1 on Ωn+1.

• fn+1 on Ωn+1 is obtained by solving Eq. (22).

• The configuration of the body is discretely updated i.e. xn+1 = xn + vn∆tn.

• χn+1 on Ωn+1 is obtained by solving Eq. (19) on Ωn+1.

• χ̇n+1 is calculated as follows: χ̇n+1 =
χn+1 − χn

∆tn
.

• PHn+1 is updated on the configuration Ωn+1.

State acceptance criteria is same as in the quasistatic case listed in Table 5.

Table 6: Dynamic (with inertia) MFDM algorithm.

4.3 Classical plasticity

We solve problems of classical plasticity at finite deformation by considering the system

div
[
tr(L)T + Ṫ − TLT

]
= 0, (27a)

Ẇ +WL = Lp, (27b)

div[T (W )] = 0, (27c)

along with the evolution of the material strength g (11) with l and k0 set to 0. For a given
state of the system (xn,W n,Lp,n) at any time tn, the solution to the system (27) is obtained
through the following steps:

• Solve Eq. (27a) to obtain material velocity vn using Eq. (16).

• Evolve Eq. (27b) locally at integration points to obtain W̃ ≡W n+1

• The geometry is updated i.e. xn+1 = xx + vn∆tn.

• With W then written as W = W̃ + gradw, (25) is then used to solve (27c) for w on
the updated configuration to maintain balance of forces which amounts to adjustment
of W n+1.

• PHn+1 is updated on the new configuration.

• State acceptance criteria is same as in the quasistatic case listed in Table 5.

The algorithm above is novel for solving classical plasticity problems at finite deformation.
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5 Results and Discussion

An MPI-accelerated finite element based computational framework for the full finite defor-
mation MFDM is developed using C++. The framework is based on the algorithms presented
in Sec. 4 and uses comprehensive state-of-the-art libraries Deal.ii [ABD+17], P4est [BWG11],
MUMPS [ADKL01], and PetSc [BAA+17]. A post-processing toolbox has been developed
in Python using its Scipy [JOP+01], Numpy [Oli06], Pandas [M+10, McK11], Matplotlib
[Hun07], and Seaborn [W+18] modules to produce publication-quality figures. The figures
presented in this document are obtained using this developed toolbox.

The finite element implementation is quite efficient. Table 7 presents average wall-clock
times for 2-d simulation for the quasistatic and dynamic evolution problems at finite defor-
mation presented in Sections 5.5 and 5.6.3, respectively.

Case Number of Nodes Processors Wall-clock time (Hours)

Quasistatic 47, 241 56 3
Dynamic 86, 876 84 7

Table 7: Wall clock times for typical simulations.

Here, we present results of some selected physically meaningful verification tests. To our
knowledge, the results presented here are also the first fully nonlinear results (in kinematics,
elasticity, and dissipation) involving dislocation mediated plasticity. The organization of this
section is as follows:

1. In Sec. 5.1, we verify the framework by studying the problem of homogeneous elastic
deformation, under simple shear and extensional loadings (both quasistatic), of blocks
of Saint-Venant-Kirchhoff and Neo-Hookean materials. When the velocity boundary
conditions are applied for an assumed homogeneous purely elastic deformation history,
it is expected that the numerics should reproduce the homogeneous deformation with
no numerically induced hysteresis upon unloading. However, given the extensive use of
the incremental equilibrium equation (15) in our scheme, it is not a priori clear that no
hysteresis is induced in the numerical approximation. This overall test also verifies the
algorithm for the accumulation of reaction forces due to velocity-Dirichlet boundary
conditions given in Sec. 3.1.1 (discussion surrounding Eq. (17)).

2. In Sec. 5.2, we calculate the finite deformation stress fields of a screw dislocation
in a body of finite extent that is assumed to behave as a compressible Neo-Hookean
material, and verify it with the analytical solution for the same case. We then calculate
the finite deformation stress field of an edge dislocation in a Saint-Venant-Kirchhoff
material. The results demonstrate significant deviations from small deformation closed-
form linear elastic solution for stress fields.

3. In Sec. 5.4, the framework is verified against the elastic loading of a Saint-Venant-
Kirchhoff material with defect evolution in the special case of no generation or motion of
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the defect relative to the material. The dislocation density evolution solely takes place
due to its coupling with the motion in the transport equation (1a) through its convected
derivative. In the absence of any flux of dislocations, the Burgers vector content of
any arbitrary area patch has to be conserved. Sec. 5.4 verifies these hypotheses under
quasistatic simple shear and extensional loadings.

4. Section 5.3 presents the stress field of a spatially homogeneous dislocation distribution
in the domain. We show contrasting predictions of the stress field by the linear and
nonlinear FDM theory.

5. Section 5.5 studies the effect of inclusion size on the strength of a model composite. We
present these results for the Crystal and J2 plasticity MFDM models and demonstrate
that for a given volume fraction of inclusions, the material strength is enhanced for
smaller inclusion sizes.

6. Sec. 5.6 presents results for elastodynamics with finite deformations of moving dislo-
cations with specified velocity. We show the evolution of the dislocation density and
plastic deformation in the body. The result for the motion of a single dislocation core
can be interpreted as the longitudinal propagation of a shear band. Sec. 5.6.3 shows the
formation of the Mach cone in the body when the dislocation moves at a speed higher
than the (linear elastic) shear wave speed of the material. The geometric nonlinearity
has an effect that the observed Mach cone is unsymmetric under prestress.

For all the results presented in this work, the input flux α(V · n) and curlα × n are
assumed to be 0 on the boundary. Also, L̂p is directly evaluated at the boundary to calculate
L̂p × n. All fields are interpolated using element-wise bilinear/trilinear interpolation in 2-
d/3-d, unless otherwise stated. The Burgers vector content of an area patch A with normal
n is given by

bA =

∫
A

αn dA, (28)

where α denotes the dislocation density field in the domain. When the dislocation distribu-
tion α is localized such that it is enclosed with the area patch A, we denote its Burgers vector
by b. It must be noted that b is independent of the chosen area patch A. We refer to the
magnitude of Burgers vector, |b|, as the strength of the dislocation. b is a material constant
which refers to the Burgers vector magnitude of a full dislocation in the crystalline material.
h denotes the length of the smallest edge of an element in the finite element mesh under
consideration. We define a dimensional measure of magnitude of the dislocation density as
ρg(x, t) := |α(x,t)|

b
.

All algorithms in this paper have been verified to reproduce classical plasticity solutions
for imposed homogeneous deformation histories by comparison with solutions obtained by
integrating the evolution equation (29) for the elastic distortion tensor F e to determine the
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Cauchy stress response for an imposed spatially homogeneous velocity gradient history, L:

Ḟ e = LF e − F eLpF e =: f̃(F e, g),

ġ = g̃(F e, g),
(29)

where Lp is defined from Eq. (7) or (5) with l = 0, and g̃ is given by (11) with k0 = 0.

A typical schematic of the basic geometry used in most problems (further details are
mentioned as required) is shown in Fig. 1. The stress-strain behavior of the body under
shear loading is modeled by plotting the averaged T12 component of the stress tensor on the
top surface, which is denoted by τ . τ is calculated by summing the tangential components of
the nodal reaction force on the top surface and then dividing by the current area (line length)
of the surface. The stress-strain behavior of the body under extensional loading is modeled
by plotting the averaged T11 component of stress, on the right surface which is denoted by σ.
σ is calculated by summing the normal components of the nodal reaction force on the right
surface and then dividing by the current area (line length) of the surface. Γ̂ represents the
applied strain rate. The shear and extensional strains are denoted by Γ and ε, respectively.
These strains are engineering strains and are calculated as Γ̂ t at any time t.

5.1 Nonlinear elasticity

Due to our interest in calculating hyperelastic stress fields of dislocations, it is essential
to make sure that the scheme accurately reproduces classical hyperelastic response. This
includes the prediction of no hysteresis in an elastic loading-unloading cycle despite the
extensive use of (15).

A 2-d plane strain problem is set up as follows: a body of size (1mm)2 (the size is
immaterial) is set up for homogeneous extension and simple shear loadings with details
below. Upon reaching 100% strain, the loading is reversed and the body is unloaded to its
original configuration. The material constants E and ν are chosen to be 62.78 GPa and
0.3647, respectively. A strain rate Γ̂ = 1s−1 is used for both the loading cases.

To model a purely elastic process, the dislocation velocity and the plastic strain rate due
to SDs are assumed to vanish i.e. Lp = 0 and V = 0. The velocity boundary conditions
for the simple shear loading are as follows: at any point P = (x1, x2) on the boundary in
the current configuration, a velocity of the form v2 = 0 and v1 = Γ̂ y(x2) is imposed, where
y(x2) is the height of the point P from the bottom surface. For the extension case, at the
point P = (x1, x2), the velocity boundary conditions of the form v2 = 0 and v1 = 0.5Γ̂X1

are applied, where X denotes the coordinates of x in the configuration at t = 0 (reference
configuration). The schematic of the set up for extensional loading is shown in Figure 1.

We plot the stress-strain response for the Saint-Venant-Kirchhoff (SVK) and the Neo-
Hookean (NH) materials for the extension (σ vs. ε) and shear (τ vs. Γ ) loadings in Figures
2a and 2b, respectively. The stress-strain plots overlap with the corresponding homogeneous
deformation solutions obtained by simply evaluating the necessary tractions corresponding
to the appropriate elastic stress-strain relationship (2)-(3) for the given imposed deformation
history. The cyclic stress-strain curves also overlap each other, and the overall response does
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Figure 1: Schematic of the geometry for extensional loading.

not show any hysteresis.

The effect of variation in stress with large homogeneous rigid rotations is studied next for
the Saint-Venant-Kirchhoff material. We calculate the stress-strain response for a a simple
shear deformation superposed with rigid body motion given by

x∗(X, t) = Q(t)F ss(t)X, (30)

where X and x∗ are the coordinates of the body in the reference and the current configura-
tions, respectively. F ss denotes the deformation gradient corresponding to a homogeneous
simple shearing motion with F ss

12 = Γ̂ t and F ss
11 = F ss

22 = F ss
33 = 1. Q(t) is the rotation tensor

written as

Q(t) =

cos(θ(t)) −sin(θ(t)) 0
sin(θ(t)) cos(θ(t)) 0

0 0 1

 , (31)

where θ(t) = ωt at any time t and ω = 2 rad. s−1 is a (constant) angular speed about the x3
axis. The velocity boundary conditions follow from

v∗(X, t) = Q̇(t)F ss(t)X +Q(t) ˙F ss(t)X,

evaluated on the boundary of the reference configuration.

Under the superposed rigid body motion defined by Eq. (30), the stress tensor for any
frame-indifferent stress response function is given as T ∗(t) = Q(t)T ss(t)QT (t), where T ss(t)
denotes the stress field for the simple shearing motion defined by F ss. We compare the
maximum error in the stress up to 100% strain defined by max

(X,t)

|T (X,t)−T ∗(X,t)|
|T ∗(X,t)| , where T is

the computed solution. The error accumulates at a very slow rate, leading to a maximum
error of ≈ 1% at Γ = 1.
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Figure 2: Stress-strain response for nonlinear elastic deformation a) Simple shear b) Uniaxial
extension.

We therefore conclude that the framework is capable of dealing adequately with nonlinear
elasticity, without any (numerically induced) hysteresis/dissipation. Moreover, the protocol
for accumulation of reaction tractions (Sec. 3.1.1, discussion surrounding Eq. (17)) discretely
in time is also sufficiently precise in dealing with large strains and rotations.

5.2 Stress fields of single dislocations

We calculate the finite deformation stress fields of single dislocations as finite element so-
lutions of the ECDD system (Eqs. (12) and (13)) as explained in Sec. 2.3. The material is
assumed to be elastically isotropic, but this is not a restriction of the developed methodol-
ogy [ZAP18, Sec. 5.8.1]. The material constants E and ν are chosen to be 200 GPa and
0.30, respectively. We define a difference measure M(T ∗,T ) between two tensors (scalars,
or tensor components) fields T ∗ and T as

M(T ∗,T ) =
|∆T |
|T |

=
|T ∗ − T |
|T |

. (32)

5.2.1 Screw dislocation

A horizontal cylindrical plate, assumed to be thick in the x3 direction and infinitely extended
in the x1-x2 plane, has a screw dislocation embedded in it. The strength of the dislocation is
assumed to be b and its line direction is taken to be in the positive x3 direction i.e. b = be3.
The body is discretized with a non-uniform mesh of approximately 125K elements which is
refined near the core as shown in Fig. 3. The dislocation is modeled by specifying an α field
of the form

α33(x1, x2, x3) =

{
ϕ0 r < r0

0 r > r0.
, αij = 0 if i 6= 3 and j 6= 3, (33)
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Figure 3: Mesh on the x3 = 0 plane for calculating the stress field of the screw dislocation.

where r =
√
x21 + x22 and r0 is chosen to be 1.2b. ϕ0 is a constant chosen to make the

dislocation Burgers vector equal to be3 by ensuring
∫
A
α33 dA = b on any cross section A

normal to e3 which encloses the dislocation core, i.e. the disk r ≤ r0. This implies

b =

∫ 2π

0

∫ r0

0

ϕ(r)r dr dθ ; ϕ0 =
b

π r20
.

We also assume that the front and back ends of the cylinder are capable of providing arbitrary
tractions. An exact solution of the ECDD equations for this problem is developed in [Ach01]
for the incompressible Neo-Hookean material. That solution is easily adapted here to develop
the same for the compressible Neo-Hookean material model whose elastic response is given
by (3). We outline this exact solution first before using it for verification. The particular
solution W satisfying the ECDD equations (12) is given by I − Hα, where the nonzero
components of Hα are obtained as

Hα31(x1, x2) =
−x2

x21 + x22

∫ r

0

ϕ(s)s ds ; Hα32(x1, x2) =
x1

x21 + x22

∫ r

0

ϕ(s)s ds,

Hα31(r) =


−x2

ϕ0

2
r < r0

−x2
ϕ0r

2
0

2r2
r > r0

; Hα32(r) =


x1
ϕ0

2
r < r0

x1
ϕ0r

2
0

2r2
r > r0.

The elastic distortion tensor F e is then given by F e = W−1 = I + Hα in this case. The
exact stress field T ∗, which satisfies equilibrium (without any further compensating fields)
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Figure 4: Comparison of analytical solution of ECDD equations (12) to its numerical solution
for T23 of the screw dislocation along x2 = 0.

is calculated from Eq. (3) as:

T ∗ = µ

 0 0 Hα31

0 0 Hα32

Hα31 Hα32 (Hα31)
2 + (Hα32)

2

 . (34)

To compute the finite element stress field, the problem is set up in a full 3-d setting as
follows: we specify a dislocation density of the form given by Eq. (33) in a cylinder of
radius 50b extending from x3 = −25b to x3 = 25b. To mimic the infinite domain size,
traction boundary conditions corresponding to the analytical solution are imposed on the
outer surface including the front and the back of the cylinder of finite extent i.e. t = T ∗n is
used in Eq. (13) where r = 50b as well as x3 = ±25b where T ∗ is given by Eq. (34).

Figure 4 shows good agreement of the numerically calculated stress field component T23
plotted along x2 = 0 on the x3 = 0 plane with the analytical result. Figures 5a and 5b show
finite deformation stress fields of the screw dislocation on the plane x3 = 0 obtained from
solving the ECDD system (Eqs. 12 and 13) as shown in Sec. 3.4.2.2.

Figures 6a and 6b show the relative difference between the numerical and analytical
stress fields. The regions close to the core (r ≤ 2b) as well as where the analytical stress
components vanish have been marked by black lines. We can notice that the error is less
than 2% everywhere.

Next, for a Saint-Venant-Kirchhoff material, we compare the finite deformation stress
field of a screw dislocation with the small deformation closed-form solution. The closed-
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(a) (b)

Figure 5: Stress field of a screw dislocation embedded in the cylindrical domain behaving as
a compressible Neo-Hookean material a) T13

µ
b) T23

µ
.

(a) (b)

Figure 6: Comparison of the numerical and analytical solutions of stress field of screw
dislocation in the cylindrical domain on the x3 = 0 plane a) M(T ∗13, T13) b) M(T ∗23, T23).
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Figure 7: Difference between stress field given by the finite deformation FDM theory and
small deformation closed-form solution for a screw dislocation in a cylindrical domain for a
Saint-Venant-Kirchhoff material.

form solution is given by [HL82]

T ∗13 = −µb
2π
· x2

(x21 + x22)

T ∗23 =
µb

2π
· x1

(x21 + x22)

T ∗11 = T ∗22 = T ∗33 = T ∗12 = 0.

(35)

The problem is set up for a Saint-Venant-Kirchhoff material in the same way as above except
now the tractions imposed on the outer surface of the cylinder are determined by using T ∗

from Eq. (35) in Eq. (13). The plot of M(T ∗,T ) in the domain, shown in Figure 7, clearly
displays that the stress fields differ in a region around the core. Therefore, we establish that
up to ≈ 6% error arise as far as 10b from the core.

5.2.2 Edge dislocation

We calculate the finite deformation stress field of a single edge dislocation in a body and
compare it with the closed-form classical (small deformation) linear elastic solution for the
corresponding problem. The small deformation closed-form solution for stress field T ∗ for a
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single edge dislocation at the center of an infinite cylindrical solid is given by [HL82]:

T ∗11 = −Dx2
(
− 2x22

(x21 + x22)
2

+
3

(x21 + x22)

)
T ∗22 = −Dx2

(
− 2x21

(x21 + x22)
2

+
1

(x21 + x22)

)
T ∗12 = Dx1

(
− 2x22

(x21 + x22)
2

+
1

(x21 + x22)

)
T ∗33 = ν(T11 + T22), T ∗13 = T ∗23 = 0.

(36)

where D = µb(2π(1 − ν))−1. x1 and x2 are the in-plane coordinates, measured from the
center of the dislocation. The computational problem is set up in a 2-d plane strain setting
for the Saint-Venant-Kirchhoff material as follows: an edge dislocation with a Burgers vector
be1 and line direction e3 is assumed in a domain of dimensions [−50b, 50b]× [−50b, 50b]. The
edge dislocation is modeled by prescribing a dislocation density α at any x = (x1, x2) of the
form

α13(x1, x2) =

{
ϕ0 |x1| ≤ w

2
and |x2| ≤ w

2

0 otherwise,
αij = 0 if i 6= 1 and j 6= 3. (37)

In this section, the core width w is taken to be b. The constant ϕ0 is evaluated by making the
Burgers vector of the dislocation equal to be1, i.e.

∫
A
α13 dA = b, where A is any area patch

in Ω that encloses the dislocation core. Tractions t on the external boundary are applied
such that t = T ∗n where T ∗ is given by Eq. (36). The stress field T of the dislocation in
the finite deformation setting is then calculated by solving the system (12) and (13) in the
rectangular domain along with the above-mentioned traction boundary conditions. We use
element-wise quadratic and linear interpolations for f and χ, respectively.

Figure 8 compares T12 obtained from the finite element solution and the closed-form
solution T ∗12 along the line x2 = 0 for three different regularly spaced grids with element
sizes: h = 0.5b, 0.25b, 0.125b. We see that the stress fields are converged w.r.t. the mesh
sizes and an element size of 0.25b is adequate for stresses outside the core. The two vertical
lines in Fig. 8 bound the small region (|x1| ≤ 2b) where the small deformation closed-form
solution becomes large, as it is singular at the origin.

Figures 9a and 9b show the plots of finite element stress components T11 and T12 in the
domain obtained by solving the ECDD system (Eqs. (12) and (13)) for the element size
h = 0.25b. Figure 10 show the plot of T11 along the line x1 = 0. It may be noted that T11 is
not anti-symmetric about x2 = 0 which is in contrast with the small deformation case. We
conjecture that this is because at finite deformation the elastic modulus depends on F e as
T = F e(C : Ee)F eT , and therefore the effective elastic moduli in a compressed region differ
from those in a tensile region, states applicable to the dislocation above and below x2 = 0.

We now compare the difference between the stress obtained from the finite element solu-
tion T and the closed-form solution for small deformation T ∗ by calculating the difference
measures as defined in (32). The plot of M(T ∗,T ) in Figure 11a clearly displays that the
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Figure 8: T12, calculated from finite deformation FDM for different element sizes compared
against the small deformation closed-form solution along x2 = 0.

(a) (b)

Figure 9: Finite deformation stress field of a single edge dislocation computed from FDM a)
T11 b) T12.
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Figure 10: T11, calculated from finite deformation FDM compared against the small defor-
mation closed-form solution along x1 = 0.

stress fields differ around the core with errors of approximately 10% for up to 10b from the
core. This is qualitatively consistent with DFT results of [IRG15] wherein it is shown show
that the energy contribution from the electronic-structure perturbations are significant up
to a distance of 10b from the edge dislocation line where the strength of the dislocation is
b. Given the very different nature of the two calculations, our result raises the intriguing
question of how much of this specific aspect of the DFT calculations is a result simply of
accommodating finite deformation elastic defect calculations or whether the observed corre-
spondence with DFT results is entirely fortuitous for our model.

Figure 11b shows the plot of the difference measure M(T ∗12, T12) for the same problem
setup but solved in a comparatively larger domain (200b × 200b), and has been verified for
convergence w.r.t mesh refinement. The figure is overlapped with contours of T12 in the
domain. The region where the small deformation closed-form solution vanishes has been
marked in blue. Two observations are noteworthy: a) The M(T ∗12, T12) along the x2 = 0
line is negligible as compared to the other region in the domain. Therefore, Figure 8 shows
no noticeable difference between the computed finite deformation T23 and small deformation
closed-form T12. b) An approximately 10% normalized stress difference exists all along
the diagonal of the extended body up to a distance of ∼ 120b from the center of the core.
Moreover, the finite deformation T12 stress component at the location (67.78b,−56.76b), close
to the diagonal, is 23 MPa at a distance of ∼ 87b from the center of the core. The latter
stress magnitude, at a significant distance from the core, is not insignificant for affecting
defect interactions in a plastically deforming body. These substantial differences between
the small and finite deformation results over extended spatial regions, uncovered apparently
for the first time here, warrant a careful examination of such conclusions against lattice
statics calculations based on well-characterized interatomic potentials.

Given the large differences between T and T ∗ observed above, we explore the domain of
validity of classical dislocation fields by varying the strength of the dislocation. To do so, we
again plot the difference measure M(T ∗,T ) for different strengths |b| of the edge dislocation
while keeping the domain size fixed and the problem set up the same as above. We show in
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(a) (b)

Figure 11: Difference in stress fields obtained from FDM and small deformation closed-form
solution. a) M(T ∗,T ) b) M(T ∗12, T12), The solid and dashed lines represent the contours of
positive and negative values of T12

µ
, respectively.

Figure 12 that the normalized difference between the finite deformation FDM stress field and
small deformation closed-form solution becomes small as the strength |b| of the dislocation
decreases, and the error is below 3% in most of the domain when |b| = b

50
. The error goes

to zero only in the limit |b| → 0. This exercise also serves as a verification of our code in
that the correct limiting trends are produced for small forcing.

5.3 Stress field of a spatially homogeneous dislocation density

The dislocation density tensor α is related to the curl of the inverse-elastic distortion tensor
in the domain. Therefore, F e being equal to a general (inhomogeneous) rotation field in the
domain gives rise to a stress free configuration with a non-zero dislocation density. Similarly,
for the linear case, the stress free dislocation distributions belong to the class such that the
linearised elastic distortion tensor (U e ≈ F e − I) is skew-symmetric. However, it can also
be shown [Mur89, HHOT93, Ach18] that any uniform distribution of dislocation density in
the domain is stress free in the linear theory. This is because, in the linear theory, a spatially
constant dislocation density distribution has vanishing incompatibility (η := (curl(αT ))sym)
and therefore the strain field is compatible and the body is stress free in the absence of any
external forces. However, as recently shown in [Ach18], such distributions are not stress free
when geometric nonlinearity is taken into account in a two-dimensional setting.

We demonstrate this sharp contrast in the predictions for stress fields based on the linear
and the nonlinear ECDD theories as a verification of our finite element scheme. The problem
is set up in a 2-d plane strain setting as follows: a spatially homogeneous distribution of edge
dislocations α13 is specified in a domain with dimensions [−50b, 50b]× [−50b, 50b]. The total
Burgers vector of the dislocation distribution is assumed to be b = 100be1 =

∫
Ω
α13 e1 dA.
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(c)

Figure 12: Difference in magnitude of stress fields obtained from FDM and small deformation
closed-form linear elastic solution for different strengths |b| of the dislocation a) b

2
b) b

10
c)

b
50

.
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Figure 13: Finite deformation stress field
for spatially uniform distribution of α13 for
Saint-Venant-Kirchhoff material.

Figure 14: Plot of e1 and e2 mapped by elas-
tic distortion F e. The colorbar shows the
length of the mapped vectors

The external boundary of the domain is considered to be traction free. A uniform grid of
400 × 400 is used to mesh the domain. The materials constants E and ν are chosen to be
200 GPa and 0.30, respectively. We use element-wise quadratic and linear interpolations for
f and χ, respectively.

In the linear setting, the stress field is calculated by solving for f (or z) as described in
Sec. 3.4.2.1. The stress field in the nonlinear setting is obtained by solving the ECDD system
(Eqs. (12) and (13)) as shown in Sec. 3.4.2.2. Figure 13 shows the magnitude of stress field
|T | obtained from the geometrically nonlinear FDM theory for the Saint-Venant-Kirchhoff

material. The |T |
µ

distribution for the Neo-Hookean material is similar to Figure 13 except
for smaller magnitude. The linear calculation predicts vanishing stress field for a spatially
homogeneous dislocation distribution in the domain.

Figure 14 shows the plot of vectors ẽ1 and ẽ2 which are obtained by mapping the or-
thogonal unit vectors e1 and e2, respectively, by the elastic distortion tensor field F e for
the Saint-Venant-Kirchhoff material. The colorbar shows the length of the mapped vectors
ẽ1 and ẽ2. The angle between the mapped vectors lies between 87.66◦ and 91.66◦ which
corresponds to small shear strains. This, and the elastic stretches in e1 and e2 directions,
result in the development of stresses inside the domain.

The stretches in the e1(e2) directions are maximum near the center of the top and bottom
(left and right) boundaries - which corresponds to the regions of large |T | in the body as
observed in Fig. 13. Interestingly, even with very small shear strains, the combination of
rotation and stretch in the e1 and e2 directions generates Cauchy shear stresses due to the
frame-indifferent, nonlinear elastic stress-strain relationship (2). Moreover, the variation in
the direction of ẽ1 and ẽ2 vectors in the domain shows the curvature of the deformed lattice
(which is incompatible everywhere in this case).
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We remark here that although we demonstrated the contrasting predictions of linear and
nonlinear theory for isotropic materials, the result holds true for any possibly inhomogeneous
and anisotropic nonlinear elastic material with a single well energy density (in the elastic
right Cauchy-Green deformation tensor).

5.4 Burgers vector constancy with dislocation density evolution
in nonlinear elastic motions

Several measures have been proposed to define the dislocation density in a body as a function
of the elastic or plastic distortion tensor [BBS55, Esh56, Fox66, Wil67, AB00a, CG01]. Cer-
melli and Gurtin [CG01] advocate a single measure of GNDs based on ‘physically motivated
requirements.’ However, as is customary in continuum mechanics, relations should always ex-
ist between any two physically meaningful measures of GNDs, and it is these transformation
rules that are physically significant rather than superficial differences in form [Ach08].

The dislocation density tensor α in (M)FDM is a two point tensor that measures the
local, undeformed Burgers vector of the dislocation distribution, per unit area of the current
configuration. For a given dislocation density α in the domain, (28) gives the Burgers vector
bA content of an area patch A(t) at any time t. In the special case when there is no flux of
dislocations into a material area patch, the dislocation density field α has to evolve in such
a way that the total Burgers vector of that material patch (given by (28)) remains constant.
Hence, under the conditions V = 0 and Lp = 0, the Burgers vector of any arbitrary area
patch should not change in time regardless of the total deformation magnitude i.e. at all
times t,

ḃA(t) =
d

dt

∫
A(t)

αn dA = 0, ∀ A ⊂ Ω

=⇒ α̇ = αLT − tr(L)α (from (1a)).

This constraint on the evolution of the dislocation density is verified under large exten-
sional and simple shear loadings below. These are stringent tests of the numerics since the
dislocation density evolution is coupled to the evolving deformation through the velocity
gradient by an adapted convected derivative of a 2-point tensor as shown in Eq. (1a).

The problem is set up as follows: An edge dislocation is assumed to be present in a
rectangular body of dimensions [−50b, 50b] × [−50b, 50b]. The dislocation is modeled by
prescribing an initial dislocation density α13(x, t = 0) of the form given by Eq. (37) at any
point x = (x1, x2). The dislocation core width w is taken as 2b. A uniform grid of 100× 100
elements is used to mesh the domain. The materials constants E and ν are chosen to be 200
GPa and 0.30, respectively. A strain rate of Γ̂ = 1s−1 is used for both the loading cases.
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Figure 15: Typical schematic of the geometry.

(a) (b)

Figure 16: Configurations (not to same scale) during extensional loading a) undeformed b)
deformed

5.4.1 Extensional loading

The velocity boundary conditions on the left and right faces are assumed to be v1 = 0 and
v1 = Γ̂L0, respectively. L0 = 100b is the initial length of the body. On the top and bottom
surfaces, v2 = 0 is imposed. The schematic of the set up is shown in Fig. 15.

Figure 16a shows the undeformed configuration of the body. The deformed configuration
of the body at a stretch Λ = 2.5 under extensional loading is shown in Fig. 16b. Since the
current area changes in the extensional loading case, the dislocation density evolves as well,
as shown in Figure 17a. However, the change in dislocation density is such that the Burgers
vector content, of the whole (2-d) body considered as the area patch, remains constant.
Figure 17b shows the variation of the strength of dislocation with stretch. We observe that
there is virtually no change in the strength of the dislocation even at large strains.
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(a) (b)

Figure 17: Variation of a) dislocation density α13 along x2 = 0 b) dislocation strength |b|
with strain.

5.4.2 Simple shear loading

Velocity boundary conditions corresponding to overall simple shear are imposed for a plane
strain problem as described in Sec. 5.1. Figure 18a shows the undeformed configuration of
the body. The deformed configuration of the body at a strain Γ = 1.5 under simple shear
loading is shown in 18b. In a 2-d setting, dislocation density evolution in the absence of
V can happen only if the material velocity field is such that tr(L) 6= 0 (see (1a)). Unlike
the small deformation case, the inhomogeneous stress field caused by the presence of a
dislocation affects the velocity solution through the rate form of the equilibrium equation
(16). Therefore, the velocity boundary conditions corresponding to the homogenous simple
shear along with the inhomogeneous stress field give rise to a non-zero tr(L) in the body.
On the other hand, the perturbation, to the velocity field produced by solely the boundary
condition (in this case isochoric), is mediated by |T ||C| , the ratio of the ‘initial stress stiffness’ to
the ‘material stiffness’ for the rate problem. We use our computational tool to evaluate the
magnitude of this perturbation through its effect on the solution for the dislocation density
(21), a purely finite deformation effect. The corresponding change in the dislocation strength
is shown in Figure 19b. We observe that there is virtually no change in the strength of the
dislocation with progress of deformation over such large strains. The response has also been
verified to be rate-independent w.r.t. the rate of loading.

These examples demonstrate the robust performance of our code in stringent tests of finite
deformation dislocation kinematics and also demonstrate the physical characteristics of our
dislocation density measure (1a) [Wil67, Ach08].
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(a) (b)

Figure 18: Configurations (not to same scale) during shear loading a) undeformed b) de-
formed

(a) (b)

Figure 19: Variation of a) dislocation density α13 along x2 = 0 b) dislocation strength |b|
with strain.
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Parameter Value

E 70 GPa

ν .17

(a)

Parameter Value

Γ̂ 1s−1

γ̂0 1s−1

m 0.03

η 1
3

b 2.5Å

g0 .05 GPa

gs .21 GPa

Θ0 .3925 GPa

k0 20

l
√

3× 0.1µm

E 110 GPa

ν .34

(b)

Table 8: Parameter values used to model influence of inclusion size on material strength: a)
Inclusion b) Matrix.

5.5 Influence of inclusion size on material strength

Materials can be hardened by distributing particles of another phase in them that either
inhibit plastic flow in them or are elastically stiffer [EA66]. The experiments performed in
Ebeling and Ashby [EA66] used a copper-silicon alloy for different particle sizes and volume
fractions of SiO2. The samples were then oriented for single slip and subjected to tensile
loading. Their experimental results demonstrated that the strength of these alloys was
greater than that of copper single crystals, and this enhancement in strength (even though
silica is elastically softer than copper) depended on the size, spacing, and volume fraction
of the inclusions. Moreover, for a given volume fraction of inclusions, the strength was
enhanced for smaller inclusion sizes.

Several studies have qualitatively modeled the same phenomena under simple shearing
motion using different continuum models [YGVdG04, BNVdG01, RWF11]. Here, we use
the crystal plasticity and J2 plasticity models of MFDM to model this behavior under a
simple shear loading. The inclusions are assumed to behave elastically and the matrix as a
rate-dependent elastic-plastic material. Table 8 presents the values of the material constants
used in this section.

The problem set up and boundary conditions for the overall simple shearing motion are
similar to the description given in Sec. 5.1. Simulations are performed on domain sizes of
(5µm)2 and (50µm)2 for the two cases i) 4 large inclusions and ii) 16 small inclusions. The
volume fraction of the inclusions is fixed at 14%. Fig. 20 shows the location of the inclusion
and mesh used for the simulations. We use the Crystal and J2 plasticity models (Eqs. (5) and
(7)) for the plastic strain rate due to SDs (V is also slightly different between the two cases).
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Figure 20: Schematic layout of the geometry a) 4 inclusions b) 16 inclusions c) Finite element
mesh with 16 inclusions. The non-uniform conforming mesh uses element sizes of L0

128
and

L0

256
in the regions far from and close to the inclusions, respectively.

The initial (t = 0) slip system directions in the body are assumed to be oriented at 30◦, −30◦,
and 0◦ w.r.t the x1 axis. To model the behavior under a quasi-static simple shear loading,
we follow the algorithm in the Table 5 except that we evolve the dislocation density only
in the matrix since the inclusions are treated as purely elastic. The conventional plasticity
results for this problem are obtained by following the algorithm outlined in Sec. 4.3. The
internal boundaries at the matrix-inclusion interface are considered as unconstrained.

Assuming linc and L denote the inclusion and the sample sizes respectively, the three non-
dimensional geometric parameters that matter in the context of non-dimensional analysis
are ( l

L
, b
L
, linc

L
). As the sample size is decreased keeping the ratio of the inclusion to sample

size fixed, the first two numbers increase and it is their effect that can potentially lead to
changes in the strength of the composite; here, we quantitatively establish this effect through
solving the full problem, which is beyond the scope of dimensional analysis. We note that
given the structure of the model, the first two non-dimensional parameters can have an effect
on strength only in the presence of dislocation density and this is trigerred, in the problems
considered, by the elastic and plastic contrast in material properties between matrix and
inclusion. It is also clear that in conventional plasticity such a size effect cannot arise
under self similar geometric scaling of the types of samples with inclusions shown in Fig. 20.
Figures 21a and 21b show the stress-strain response (τ vs. Γ ) of the samples for the crystal
and J2 plasticity MFDM models, respectively. MFDM is able to model the dependence of
the mechanical response of the material on the size of the reinforcing particles. For both the
models, the response of the sample with 16 small inclusions is harder than the sample with
4 larger inclusions keeping the volume fraction of inclusions fixed.

As an algorithmic aside, we have verified that the results obtained from the novel algorithm
for conventional plasticity outlined in Sec. 4.3 are consistent with those from the MFDM
plasticity algorithm with k0 = 0, V = 0 for the problem setup with 4 inclusions, which also
serves as a self-consistent verification for these algorithms.

Table 9 presents the ratios of τ−τ0 at 10% strain, where τ0 is the initial yield stress, when

41



0.0 0.02 0.04 0.06 0.08 0.1

Γ

0.00.0

0.5

1.0

1.5

2.0

2.5

τ
/
g

0

conventional plasticity 4 I

conventional plasticity 16 I

(5µm)2 - 4 I

(5µm)2 - 16 I

(50µm)2 - 4 I

(50µm)2 - 16 I

(5µm)2 - 4 I

(5µm)2 - 16 I

(50µm)2 - 4 I

(50µm)2 - 16 I

(a)

0.0 0.02 0.04 0.06 0.08 0.1

Γ

0.00.0

0.5

1.0

1.5

2.0

τ
/
g

0

conventional plasticity 4 I

conventional plasticity 16 I

(5µm)2 - 4 I

(5µm)2 - 16 I

(50µm)2 - 4 I

(50µm)2 - 16 I

(5µm)2 - 4 I

(5µm)2 - 16 I

(50µm)2 - 4 I

(50µm)2 - 16 I

(b)

Figure 21: Stress-strain response a) Crystal plasticity b) J2 plasticity (I: Inclusions).

Ratio of τ − τ0 on halving particle size

Experimental Crystal J2

1.414 1.258 1.237

Table 9: Comparison of enhancement in strength with experimental data taken from [EA66].
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(a) (b)

Figure 22: Dislocation density at 10% strain when the size of inclusions is decreased keeping
the volume fraction same for J2 plasticity model. a) (5µm)2 domain size with 16 inclusions
b) (50µm)2 domain size with 16 inclusions.

the inclusion size is halved while keeping the volume fraction fixed at ∼ 14%, for the crystal
and J2 plasticity models. These results are compared with the experimental trend observed
in [EA66] over a large class of data, with the conclusion, for the tests conducted here, that
the mentioned ratio should be equal to the square root of the reciprocal of the factor by
which the inclusion size is reduced, i.e., the strengthening ratio should be

√
2, for a decrease

in average particle diameter by a factor of 1
2
. The maximum volume fraction of inclusions

was 1% in the experiments, and the average particle diameter ranged from 0.06−0.18µm. A
single slip system was predominantly activated in the experiments, which is in accord with
the orientation chosen by us. The data and abstracted trend in [EA66, Eq.(3) and Sec. 5]
suggest that the strengthening ratio considered here should be independent of the Burgers
vector, the applied strain, and the volume fraction. Our computational results are in good
agreement with the experimental data.

Figure 22 shows the distribution of the dislocation density for different domain sizes and
inclusions for the J2 plasticity models. It can be seen that for a given sample size, the
average dislocation density norm in the domain is greater when the inclusions are smaller
in size. Also, for the larger sample sizes (50µm)2, we see that the magnitude of dislocation
density is smaller as compared to the corresponding (5µm)2 domain sizes and therefore less
hardening is observed.

In what follows, we briefly study the convergence of our results, choosing the problem
with 16 inclusions for the J2 MFDM model. Figure 23 shows the convergence in the stress-
strain plot for the (5µm)2 sample size. Mesh A refers to the non-uniform mesh shown in
Fig. 20c and Mesh B refers to a uniformly refined mesh with 256 elements in each direction.
The maximum error is 4.74% at 10% strain. We did not observe any visible difference in
the stress-strain response corresponding to the graded and uniformly fine meshes, for the
(50µm)2 sample size.
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Figure 23: Convergence in the stress-strain response for the (5µm)2 sample size with 16
inclusions for the J2 MFDM model. Mesh A refers to the non-uniform mesh shown in Fig. 20c
and Mesh B refers to the uniformly refined mesh with 256 elements in each direction.

Figures 24a, 24b, and 24c show the ρg distribution at Γ = 0.1 for the (5µm)2, (30µm)2,
and (50µm)2 sample sizes with 16 inclusions using the uniformly refined Mesh B. The graded
microstructural patterns, following the graded mesh, observed in Figure 22 are an artifact
of the choice of the mesh. However, the dislocation density distribution in Figures 22a and
22b qualitatively resembles Figures 24a and 24b, respectively, in the regions close to the
inclusions. The dislocation density generates near the inclusion boundary for all the sample
sizes. These dislocation boundary layers are clearly separated for the (50µm)2 sample size.
With a decrease in sample and inclusion size Figure 24 shows that the (rescaled) distance
between the boundary layers decreases to the extent that the dislocation density is distributed
through out the body for the (5µm)2 sample size.

5.5.1 Elastically stiffer inclusions

In this section, we model the same phenomena for the case when the inclusions are harder
than the matrix. The Young’s modulus and Poisson’s ratio for the inclusion are taken to be
220 GPa and 0.17, respectively. All other material parameters and problem setup remains
the same.

Figures 25a and 25b shows the stress-strain response for this case for crystal and J2
plasticity models of MFDM, respectively. As expected, the material hardening is more
pronounced when inclusions are harder than the matrix as this increases the average elastic
modulii of the domain. There is enhancement in the purely elastic response of the material
for the case of stiffer inclusions (that cannot be seen due to the large strain range covered
by the results).

5.6 (Stress-uncoupled) FDM with inertia

We present some results of calculations where inertia is accounted for in the numerical
formulation. The full algorithm for the dynamic case appears in Table 6. The results
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(a) (b)

(c)

Figure 24: Dislocation density distribution at 10% strain for different sample sizes with 16
inclusions for the J2 MFDM model using a uniformly refined mesh with 256 elements in each
direction. a) (5µm)2 b) (50µm)2 c)(30µm)2.
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Figure 25: Effect of inclusion stiffness on the stress-strain response of the (5µm)2 sample
with 16 inclusions. a) Crystal plasticity b) J2 plasticity.

presented here are for the case when the dislocation velocity, V0, below is uncoupled to the
underlying stress field i.e. ii is prescribed. The governing equations are

tr(L)α+ α̇−αLT = −curl (α× V0)− ε̃(|α|) curl curlα
= −curl (α× V0) + ε̃(|α|) div gradα (38)

along with (2) and (15). As shown subsequently, under this evolution the dislocation core
changes shape as it moves and is spread over progressively smaller area, with the contraction
mathematically expected for this case of a system of, instead of a scalar, wave equations due
to the coupling to the velocity field, as shown in [AT11]. Without the term involving the
Laplacian, the dislocation density then becomes larger so as to maintain constant Burgers
vector. Therefore, we assume a non-zero core energy with a non-dimensional value of ε̃ =
0.2|αb|2 to avoid large dislocation density. The form of the second term on the rhs of (38) is
motivated by the thermodynamic constitutive structure of the full FDM theory [Ach11] where
the dislocation velocity has a contribution from the core energy of the form X(curlα)Tα
that provides an rhs contribution to the dislocation density evolution of

−
[
curl

(
α×X(curlα)Tα

)]
= (α⊗α) : div gradα+ additional terms (39)

When the evolution of dislocations is restricted to be in a single direction, say x, this
term takes the form |α|2α,xx, up to constants [ZAWB15]. This along with (39) serves as
motivation for the diffusive term in (38).

We study the three following problems:

1. A single edge dislocation moving in the e1 direction at constant velocity. The solution
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Figure 26: Mesh with 23, 000 elements used in Sections 5.6.1 and 5.6.2
.

reflects similarities to the longitudinal propagation of dynamic shear bands.

2. Two dislocations of opposite sign moving towards each other with prescribed velocities
and annihilating.

3. A single dislocation in a pre-strained body and moving at a speed greater than the
linear elastic shear wave speed vs of the material. This gives rise to an (unsymmetric)
propagating Mach cone in the domain.

Although the dislocation velocity is uncoupled to the underlying stress field, the dislo-
cation density evolution is coupled to the evolving deformation of the body through the
gradient of the material velocity field v which is a finite deformation effect.

In the formulation, b is a fundamental length scale that correlates with the core size.
At the atomistic scale, b denotes the Burgers vector of the full dislocation in the material.
At the mesoscale, it could be a length scale related to the core-size of a shear band, a
measurable quantity. We use the non-uniform mesh shown in Fig. 26 which is highly refined
in a layer where the dislocation density will evolve. Table 10 presents the values of the
material constants used for the simulations presented in this section. The non-dimensional
time t∗ is given as t∗ = t vs

b
, where t is the dimensional time.
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Parameter
ρv2s
µ

E

µ
ν

Value 1 2.6 .33

Table 10: Parameter values used for modeling dislocation evolution with inertia.

5.6.1 Single dislocation

The problem is set up as follows: a single edge dislocation with Burgers vector b = be1
is assumed to be present in a domain of dimensions [−20b, 20b] × [−20b, 20b]. The edge
dislocation is modeled by prescribing an initial dislocation density tensor α of the form

α13(x1, x2, t = 0) = ϕ0

(
1− tanh2

(
|x− p|

b

))
,

αij(x1, x2, t = 0) = 0 if i 6= 1 and j 6= 3.

(40)

ϕ0 is a constant chosen to give a dislocation of strength b by ensuring
∫
A0
α13 dA = b, where

A0 is any area patch in the domain at t = 0 that encloses the dislocation core. x1 and x2
are the in-plane coordinates of any point x in the domain and p denotes the initial position
of the center of the dislocation core. At all times, the dislocation is assumed to be moving
with a constant velocity V = vs

2
e1. For the computation presented below, p is taken to be

0. The system is then evolved by following the algorithm given in Table 6.

Figures 27a shows the dislocation density distribution in the body at t = 0. Figure 27b
shows the formation of a slip step in the body upon exit of the dislocation. Figures 28 show
the evolution of the dislocation density in the region highlighted in the black box at various
time instants. As the evolution progresses, the dislocation density is not radially symmetric
anymore, and tilts towards the right. The distribution is almost elliptical with major axis
along the direction of tilting. The tilt is towards the right because of the positive (α×V )12
component of the plastic strain rate generated by the motion of the dislocation. Therefore,
a negative dislocation (b = −be1) moving in the −e1 direction also tilts towards the right
as the plastic strain rate component (α×V )12 is still positive which can be seen in Fig. 32.
Although not shown here, we have verified that a negative dislocation (b = −be1) moving
in the e1 direction tilts towards the left as the plastic strain rate component (α × V )12 is
negative for this case.

Although the tilt in the core shape is self-consistent for the idealized, ‘kinematic’ dislo-
cation motion considered here, the observed core shapes, especially at equilibria, are not to
be considered as physically representative of those to be obtained when full effects of stress,
core energy, and non-convex generalized stacking fault energies are taken into account, e.g.
[ZAWB15].

Figures 29 and 30 show the evolution of the F12 component of the deformation gradient
F as the dislocation core moves. There is an accumulation of shear deformation in the wake
of the moving dislocation. The body is permanently deformed when the dislocation exits
the body with a clear region where slip occurred, mimicking a shear band.
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(a) (b)

Figure 27: Dislocation density distribution in the body at different times a) t∗ = 0 b) t∗ = 50,
i.e. when dislocation exits the body.

(a) (b) (c)

(d) (e) (f)

Figure 28: Dislocation density distribution in the body at different times t∗ a) 7.5 b) 12.5 c)
20 d) 27.5 e) 32.5 f) 37.5.
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(a)

Figure 29: F12 component of deformation gradient at t∗ = 50 when the dislocation exits the
body.

(a) (b) (c)

(d) (e) (f)

Figure 30: F12 in the highlighted region at different times, t∗ a) 7.5 b) 12.5 c) 20 d) 27.5 e)
32.5 f) 37.5.
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5.6.2 Multiple dislocations

The problem is set up as follows: Two edge dislocations with Burgers vectors b1 = be1 and
b2 = −be1, respectively, are considered in a domain with dimensions [−20b, 20b]×[−20b, 20b].
The edge dislocations are modeled by prescribing an initial dislocation density tensor α of
the form

α13(x1, x2, t = 0) = ϕ0

(
tanh2

(
|x− p|

b

)
− tanh2

(
|x− q|

b

))
αij(x1, x2, t = 0) = 0 if i 6= 1 and j 6= 3.

The value of ϕ0 is same as in Eq. (40) which ensures the strength of each dislocation is b.
p and q are the initial position vectors of the two dislocations. In the computed example
below, p and q are taken as −5be1 and 5be1, respectively. At all times, each dislocation is
assumed to be moving with a prescribed velocity given by

V i =
vs
2.0
e2 × li (41)

where li = 1
|bi|(b

i ⊗ e3)Te1 is the line direction of the ith dislocation. Therefore, the positive
and negative dislocations move in the e1 and −e1 directions, respectively, at the same
constant speed. The system is then evolved by following the algorithm given in Table 6.

Figure 32 shows the dislocation positions at various non-dimensional times, t∗. It can be
seen that the two dislocations of opposite sign annihilate each other leaving behind a slipped
embryo along the path of the dislocations in the domain. This is demonstrated in Figure 34
which shows the evolution of the F12 component of the deformation gradient in the domain
at the corresponding times.

As noted in [VBAF06], for a 1-d small deformation case (dislocation evolution is uncou-
pled to stress field and material velocity gradient), when dislocation densities of opposite
sign meet, a discontinuity (shock) develops, grows, and finally disappears. Here, we have
presented a full finite deformation scheme that is able to qualitatively resolve the shock and
model the result of the interaction, which is that the dislocations are annihilated.

5.6.3 Mach cone

The problem is set up as follows: a single edge dislocation with Burgers vector b = be1
is assumed to be present in a square domain of dimensions [−20b, 20b] × [−20b, 20b]. The
edge dislocation is modeled by prescribing an initial dislocation density of the form given by
Eq. (40). Figure 35 shows the non-uniform mesh with approximately 86K elements used to
capture the accurate motion of the stress waves in the domain.

The problem is solved in 2 steps:

• In the first step, the body is elastically deformed (V = 0) under a quasistatic simple
shear loading until it reaches a strain of Γ = 14.8%.
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(a) (b)

Figure 31: Dislocation density distribution in the body at a) t∗ = 0 b) t∗ = 15, i.e. after
annihilation.

(a) (b)

(c) (d)

Figure 32: Dislocation density distribution in the highlighted region at different times t∗ a)
2.5 b) 5 c) 7.5 d) 10.
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(a)

Figure 33: F12 component of the deformation gradient at t∗ = 15, i.e after annihilation.

(a) (b)

(c) (d)

Figure 34: F12 component of the deformation gradient in the highlighted region at different
times t∗ a) 2.5 b) 5 c) 7.5 d) 10.
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Figure 35: Mesh with 86, 000 elements for modeling Mach cone formation.

• In the second step, the forces on the boundary are held constant and system is evolved
dynamically (following the algorithm from Table 6) with dislocation velocity prescribed
as V = 2 vse1.

Figure 36 shows the T12 component of the stress field T of the dislocation moving at
twice the linear elastic shear wave speed of the material under an applied pre-strain of
Γ = 14.8% at various non-dimensional times, t∗. It can be seen from Fig. 36d that a
Mach cone is formed behind the dislocation core and whose wings subtend angles that are
different between the top and the bottom regions. Such asymmetry is absent when the same
phenomenon is modeled under no prestress as shown in Fig. 37. The nonlinearity is the
main reason that leads to this asymmetric behaviour in the Mach cone. This is because for a
nonlinear elastic material at finite deformation, the difference in the stress fields (primarily
T11), and their coupling to the prestress, between the top and the bottom of the dislocation
core greatly affects the local stiffness of the system. This leads to different magnitude of the
(‘local’) shear wave speed at points above and below the dislocation in contrast to the linear
theory. Similar observations were also made in [ZAWB15] in a setting wherein geometric
nonlinearities in the total deformation and elastic constitutive equation are allowed, and
the plastic distortion field is evolved with dislocation velocity coupled to the underlying
stress field, but no kinematic nonlinearities in the dislocation density evolution are taken
into account.
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(a) (b)

(c) (d)

Figure 36: Cauchy stress (shear component) wave at different non-dimensional times in a
pres-stressed body.
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(a) (b)

(c) (d)

Figure 37: Cauchy stress (shear component) wave at different non-dimensional times.
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6 Concluding Remarks

This paper presented results of a first model of mesoscale crystal/J2 plasticity of unrestricted
geometric and material nonlinearities where static and dynamic fields of dislocation distribu-
tions can be explicitly calculated and dislocation transport, and its attendant plastic strain
rate, is fundamentally accounted. Staggered numerical algorithms for the quasistatic and
dynamic (with inertia) cases were devised and implemented in a finite element framework.
To our knowledge, this accomplishment stands as a first computational implementation of a
partial differential equation based model of the mechanics of dislocations at finite deforma-
tions (the alternative is Molecular Dynamics, with computation of static elastic fields being
the overlap of scope of the models). The model has the following attractive features:

1. Computation of finite deformation stress fields of arbitrary (evolving) dislocation distri-
butions in finite bodies of arbitrary shape and elastic anisotropy under general bound-
ary conditions;

2. Built-in kinematic ingredient to allow modeling of longitudinal propagation of plastic
wavefront as a fundamental kinematical feature of plastic flow;

3. No involvement of a multiplicative decomposition of the deformation gradient, a plastic
distortion tensor, or a choice of a reference configuration to describe the micromechanics
of plasticity arising from dislocation motion and prediction of plastic spin with isotropic
J2 plasticity assumptions.

The developed computational tool was then used to study problems of significant sci-
entific interest, after verification of the numerical formulation and algorithm. We showed
significant differences in the stress field of a single edge dislocation obtained from finite de-
formation FDM and small deformation theory existing even in large extended regions away
from the dislocation core. The sharply contrasting predictions of the linear and nonlinear
FDM theories for the stress field of a spatially homogeneous dislocation distribution was
demonstrated.

We demonstrated size effect with crystal and J2 plasticity MFDM under simple shear
loading in a rate-dependent setting while using the simplest possible isotropic model of work
hardening. Through the motion of localized dislocation cores, the built-in kinematic in-
gredient in MFDM that potentially allows for the modeling of longitudinal propagation of
shear bands without the involvement of any ad-hoc failure criteria was shown. In the stress-
uncoupled scenario, we showed the formation of a slip step upon motion and subsequent exit
of a dislocation core from the body, as well as the annihilation of two edge dislocations of
opposite sign moving towards each other. We also explored the role of finite deformation
leading to differences in the (propagating) Mach cone wings for the case of a single disloca-
tion moving at twice the linear elastic shear wave speed of the material, with and without
pre-strain in the body. The model has also been succesfully used to predict stressed disloca-
tion pattern formation, including dipolar dislocation walls under simple shear loading, and
unloaded stressed metastable dislocation microstructures [AA19].
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Appendix A (Mesoscale) Field Dislocation Mechanics

(M)FDM

Significant portions of this section are common with [AA19], a paper developed concurrently
with this work. We include this material here for the sake of being self-contained and since
the theory being discussed is quite recent.

Field Dislocation Mechanics (FDM) was developed in [Ach01, Ach03, Ach04] building on
the pioneering works of Kröner [Krö81], Willis [Wil67], Mura [Mur63], and Fox [Fox66]. The
theory utilizes a tensorial description of dislocation density [Nye53, BBS55], which is related
to special gradients of the (inverse) elastic distortion field. The governing equations of FDM
at finite deformation are presented below:

α̊ ≡ tr(L)α+ α̇−αLT = −curl (α× V ) (42a)

W = χ+ gradf ; F e := W−1

curlW = curlχ = −α
divχ = 0

}
(42b)

div
(
gradḟ

)
= div (α× V − χ̇− χL) (42c)

div [T (W )] =

{
0 quasistatic

ρv̇ dynamic.
(42d)

Here, F e is the elastic distortion tensor, χ is the incompatible part of W , f is the plastic
position vector [RA06], gradf represents the compatible part of W , α is the dislocation
density tensor, v represents the material velocity field, L = gradv is the velocity gradient,
and T is the (symmetric) Cauchy stress tensor. The dislocation velocity, V , at any point is
the instantaneous velocity of the dislocation complex at that point relative to the material;
at the microscopic scale, the dislocation complex at most points consists of single segment
with well-defined line direction and Burgers vector. At the same scale, the mathematical
model assigns a single velocity to a dislocation junction, allowing for a systematic definition
of a thermodynamic driving force on a dislocation complex that consistently reduces to
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well-accepted notions when the complex is a single segment, and which does not preclude
dissociation of a junction on evolution.

The statement of dislocation density evolution (42a) is derived from the fact that the
rate of change of Burgers vector content of any arbitrary area patch has to be equal to the
flux of dislocation lines into the area patch carrying with them their corresponding Burgers
vectors. Equation (42b) is the fundamental statement of elastic incompatibility and relates
the dislocation density field to the incompatible part of the inverse elastic distortion field
W . It can be derived by considering the closure failure of the image of every closed loop in
the current configuration on mapping by W . Equation (42c) gives the evolution equation
for the compatible part of the inverse elastic distortion field. It can be shown to be related to
the permanent deformation that arises due to dislocation motion [Ach04]. The field gradf
can also be viewed as the gradient of the inverse deformation for purely elastic deformations.
Equation (42d) is the balance of linear momentum (in the absence of body forces). Balance
of mass is assumed to hold in standard form, and balance of angular momentum is satisfied
by adopting a symmetric stress tensor.

Equation (42) is augmented with constitutive equations for the dislocation velocity V
and the stress T in terms of W and α [Ach04, ZAWB15] to obtain a closed system. It can
also be succinctly reformulated as

Ẇ = −WL− (curlW )× V

div [T (W )] =

{
0 quasistatic

ρv̇ dynamic,

(43)

but since the system of Hamilton-Jacobi equations in (43)1 is somewhat daunting, we work
with (42) instead, using a Stokes-Helmholtz decomposition of the field W and the evolution
equation for α in the form of a conservation law.

FDM [Ach01, Ach03, Ach04] is a model for the representation of dislocation mechanics at a
scale where individual dislocations are resolved. In order to develop a model of plasticity that
is applicable to mesoscopic scales, a space-time averaging filter is applied to microscopic FDM
[AR06, Ach11, Bab97] and the resulting averaged model is called Mesoscale Field Dislocation
Mechanics (MFDM). For any microscopic field m, the weighted, space-time running average
field m is given as

m(x, t) :=
1∫

B(x)

∫
I(t)

w(x− x′, t− t′)dx′dt′

∫
Λ

∫
Ω

w(x− x′, t− t′)m(x′, t′)dx′dt′,

where Ω is the body and Λ is a sufficiently large interval of time. B(x) is a bounded region
within the body around the point x with linear dimension of the spatial resolution of the
model to be developed, and I(t) is a bounded interval contained in Λ. The weighting function
w is non-dimensional and assumed to be smooth in the variables x,x′, t, t′. For fixed x and
t, w is only non-zero in B(x)× I(t) when viewed as a function of x′ and t′.

MFDM is obtained by applying this space-time averaging filter to the FDM equations
(42) with the assumption that all averages of products are equal to the product of averages
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except for α× V . The governing equations of MFDM [Ach04, RA05, RA06, Ach11, AA19]
at finite deformation (without body forces) can be written as

α̊ ≡ tr(L)α+ α̇−αLT = −curl
(
α× V +Lp

)
(44a)

W = χ+ gradf

curlW = curlχ = −α
divχ = 0

}
(44b)

div
(
gradḟ

)
= div

(
α× V +Lp − χ̇− χL

)
(44c)

div [T (W )] =

{
0 quasistatic

ρ v̇ dynamic,
(44d)

where Lp is defined as

Lp(x, t) := (α−α(x, t))× V (x, t) = α× V (x, t)−α(x, t)× V (x, t). (45)

The barred quantities in (44) are simply the weighted, space-time, running averages of
their corresponding microscopic fields. The field α is the Excess Dislocation Density (ED).
The microscopic density of Statistical Dislocations (SD) at any point is defined as the dif-
ference between the microscopic dislocation density α and its averaged field α:

β(x,x′, t, t′) = α(x′, t′)−α(x, t),

which implies

ρt =
√
ρ2g + ρ2s

ρt(x, t) :=

√(
|α|
b

)2

(x, t) ; ρg(x, t) :=
|α(x, t)|

b
; ρs(x, t) :=

√(
|β|
b

)2

(x, t),

(46)

with b the magnitude of the Burgers vector of a dislocation in the material, ρt the total
dislocation density, ρg the magnitude of ED (commonly referred to as the geometrically nec-
essary dislocation density), and ρs is, up to a scaling constant, the root-mean-squared SD.
We refer to ρs as the scalar statistical dislocation density (ssd). It is important to note that
spatially unresolved dislocation loops below the scale of resolution of the averaged model do
not contribute to the ED (α) on space time averaging of the microscopic dislocation density,
due to sign cancellation. Thus, the magnitude of the ED is an inadequate approximation
of the total dislocation density. Similarly, a consideration of ‘symmetric’ expansion of unre-
solved dislocation loops shows that the plastic strain rate produced by SD, Lp (45), is not
accounted for in α×V , and thus the latter is not a good approximation of the total averaged
plastic strain rate α× V .

In MFDM, closure assumptions are made for the field Lp and the evolution of ρs, as
is standard in most, if not all, averaged versions of nonlinear microscopic models, whether
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of real-space or kinetic theory type. As such, these closure assumptions can be improved
as necessary (and increasingly larger systems of such a hierarchy of nonlinear pde can be
formally written down for MFDM). In this paper, we adopt simple and familiar closure
statements from (almost) classical crystal and J2 plasticity theories and present the finite
element formulation for the model. Following the works of Kocks, Mecking, and co-workers
[MK81, EM84] we describe the evolution of ρs through a statement, instead, of evolution
of material strength g described by (11); Lp is defined by (5) (or (7)) following standard
assumptions of crystal/J2 plasticity theory and thermodynamics. A significant part of the
tensorial structure of (5) and (7) can be justified by elementary averaging considerations of
dislocation motion on a family of slip planes under the action of their Peach-Köehler driving
force [AC12].

Below, and in system (1) as well as the rest of the paper, we drop the overhead bars for
convenience in referring to averaged quantities.

As shown in [AZ15], (1a) and (1b) imply

Ẇ +WL = α× V +Lp (47)

up to the gradient of a vector field, which is re-written as

L = Ḟ eF e−1 + F e(α× V +Lp),

where F e := W−1. This can be interpreted as the decomposition of the velocity gradient
into an elastic part, given by Ḟ eF e−1, and a plastic part given by F e(α × V + Lp). The
plastic part is defined by the motion of dislocations, both resolved and unresolved, on the
current configuration and no notion of any pre-assigned reference configuration is needed.
Of significance is also the fact that MFDM involves no notion of a plastic distortion tensor
and yet produces (large) permanent deformation.

Appendix B Calculation of ∂T
∂F e

B.1 Saint-Venant-Kirchhoff material

For a Saint-Venant-Kirchhoff material whose stress response is given by Eq. (2), the partial
derivative of T w.r.t. F e can be obtained as

Tij = F e
ikCklrsErsF

eT
lj

∂Tij
∂F e

mn

=
∂F e

ik

∂F e
mn

CklrsErsF
e
jl + F e

ikCklrs
∂Ers
∂F e

mn

F e
jl + F e

ikCklrsErs
∂F e

jl

∂F e
mn

Ee
rs =

1

2

(
F eT
rp F

e
ps − δrs

)
=⇒ ∂Ee

rs

∂F e
mn

=
1

2
(δrnF

e
ms + F e

mrδsn)

∂Tij
∂F e

mn

= δimCnlrsErsF
e
jl +

1

2
F e
ikCklrs [F e

msδrn + F e
mrδns]F

e
jl + F e

ikCknrsErsδjm.
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B.2 Neo-Hookean material

For the Neo-Hookean Material whose stress is given by Eq. (3), the partial derivative of T
w.r.t. F e can be obtained as

Tij = µ(F e
ikF

eT
kj − δij)

∂Tij
∂F e

mn

= µ

(
∂F e

ik

∂F e
mn

F e
jk + F e

ik

∂F e
jk

∂F e
mn

)
= µ

(
δimF

e
jn + F e

inδjm
)

Appendix C Calculation of ∂T
∂(gradz)

C.1 Saint-Venant-Kirchhoff material

At small deformation, writing F e = I +U e, the linearised stress for Saint-Venant-Kirchhoff
material is then given as

Tij = F e
ikCklrsErsF

eT
lj

Tij =
1

2
(δik + U e

ik)Cklrs [(δar + U e
ar)(δas + U e

as)− δrs] (δjl + U eT
lj )

≈ 1

2
Cklrs(U

e
rs + U e

sr)

≈ CklrsU
e
rs

wherein the symmetry in the last two indices of C has been used. Writing H = gradz, ∂T
∂H

can then be calculated as

∂Tij
∂Hab

=
∂Tij
∂U e

pq

∂U e
pq

∂Hab

= Cklrsδprδqsδpaδqb

= Cklab.

C.2 Neo-Hookean material

For Neo-Hookean material whose stress response is given by (3), the linearised stress can be
calculated as:

T = µ(F eF eT − I)

Tij = µ(F eT
ip F

e
pj − δij)

= µ((δpi + U e
pi)(δpj + U e

pj)− δij)
≈ µ(U e

ij + U e
ji)
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Writing H = gradz, ∂T
∂H

can then be calculated as

∂Tij
∂Hab

=
∂Tij
∂U e

pq

∂U e
pq

∂Hab

= µ(δipδjq + δjpδiq)δpaδqb

= µ(δiaδjb + δjaδib)
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