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a b s t r a c t 

Stressed dislocation pattern formation in crystal plasticity at finite deformation is demonstrated for the 

first time. Size effects are also demonstrated within the same mathematical model. The model involves 

two extra material parameters beyond the requirements of standard classical crystal plasticity theory. The 

dislocation microstructures shown are decoupled from deformation microstructures, and emerge without 

any consideration of latent hardening or constitutive assumptions related to cross-slip. Crystal orientation 

effects on the pattern formation and mechanical response are also demonstrated. The manifest irrele- 

vance of the necessity of a multiplicative decomposition of the deformation gradient, a plastic distortion 

tensor, and the choice of a reference configuration in our model to describe the micromechanics of plas- 

ticity as it arises from the existence and motion of dislocations is demonstrated. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Plastic deformation in crystals arises mainly due to the motion 

of dislocations under the action of externally applied stresses. The 

mutual interaction of dislocations under applied loads leads to the 

development of intricate dislocation patterns such as dislocation 

cells ( Mughrabi and Wüthrich, 1976; Mughrabi et al., 1979; 1981; 

Hughes and Hansen, 20 0 0 ) and labyrinths ( Jin and Winter, 1984 ), 

often with dipolar dislocation walls, and mosaics ( Theyssier et al., 

1995 ). These microstructures appear at mesoscopic length scales 

in between the atomic and macroscopic scales. It is a fundamental 

challenge of theories and models of plasticity to predict such mi- 

crostructure, with the attendant, often large, deformation and in- 

ternal stress fields. 

Different approaches have been used in the literature to model 

the development of dislocation microstructures such as Ortiz and 

Repetto (1999) , Limkumnerd and Sethna (2006) , Chen et al. (2010) , 

Xia and El-Azab (2015) , and other references mentioned therein. In 

the work of Ortiz and Repetto (1999) , dislocation structures at fi- 

nite deformation have been shown to be compatible with deforma- 

tion fields that are minimizers of a pseudoelastic energy functional 

for a discrete time step of a rate independent crystal plasticity for- 

mulation. The predicted dislocation microstructures are necessar- 

ily stress-free by construction with non-dipolar walls (i.e., walls 

with non-zero net Burgers vector), and are accompanied by slip- 
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band deformation microstructures. A key ingredient for obtaining 

both the deformation and dislocation microstructures is the non- 

convex nature of the incremental energy functional, which in turn 

is the outcome of the use of strong latent hardening promoting lo- 

cal single-slip in their model. 

Sethna and co-workers ( Limkumnerd and Sethna, 2006; Chen 

et al., 2010 ) demonstrate (non-dipolar) dislocation walls with and 

without the presence of dislocation climb, showing the formation 

of self-similar dislocation microstructure starting from smooth ran- 

dom initial conditions. Their model is ‘minimal’ in nature, involv- 

ing geometrically linear kinematics for the displacement field, and 

a transport equation for the Nye tensor density ( Nye, 1953 ) field 

arising from a conservation statement for the Burgers vector. On 

the other hand, Xia and El-Azab (2015) demonstrate dislocation 

microstructure as an outcome of a model that assumes geometri- 

cally linear kinematics for the total deformation coupled to a sys- 

tem of stress-dependent, nonlinear transport equations for vector- 

valued slip-system dislocation densities. These slip system density 

transport equations involve complicated constitutive assumptions 

related to cross-slip, and the authors promote the point of view 

that dislocation patterning is necessarily related to the modeling 

of dislocation density transport at the level of slip system densities 

and the modeling of cross-slip. The work in Taupin et al. (2007) , 

Fressengeas et al. (2011) shows the development of polar disloca- 

tion microstructures in the modeling of torsion experiments in ice 

using MFDM, including the modeling of cross-slip and additional 

back stresses. 

The emergence of spatial inhomogeneity in the Nye tensor field 

was also reported in Roy and Acharya (2006) , Puri et al. (2011) at 
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small deformations, utilizing a model referred to as Mesoscale 

Field Dislocation Mechanics (MFDM), that encompasses those 

used in Limkumnerd and Sethna (2006) , Chen et al. (2010) . 

In particular, these latter works do not account for ‘statistical 

dislocations’, those that are responsible for most of the plastic de- 

formation at the length scales in question where individual dis- 

locations are not resolved (MFDM accounts for such). The model 

in Xia and El-Azab (2015) belongs to the same mathematical class 

as MFDM, being physically more involved with more state de- 

scriptors and associated coupled, nonlinear, equations of evolu- 

tion. An attempt to understand the emergence of microstructure 

in this collection of models was made in Roy and Acharya (2006) , 

Das et al. (2016) , in drastically simplified 1-d settings. The conclu- 

sion in Das et al. (2016) was that in all likelihood such complex- 

ity is not essential for the emergence of dislocation microstructure 

in this family of models; the nature of the fundamental transport 

equation for Nye tensor evolution coupled to stress along with 

the simplest representations, from conventional plasticity theory, 

of the plastic strain rate due to statistical dislocations, is adequate 

for the stated purpose, while being faithful to representing the 

plastic strain rate of both resolved and unresolved dislocation pop- 

ulations. 

In this paper, we demonstrate that the aforementioned ex- 

pectation is borne out in a full-fledged, geometrically nonlinear 

model of crystal plasticity based on MFDM. We demonstrate in- 

tricate spatial patterning, crystal orientation and size effects ( Fleck 

et al., 1994; Liu et al., 2012; Stelmashenko et al., 1993; Ebeling and 

Ashby, 1966 ), the occurrence of stressed dislocation microstruc- 

tures both under applied loads and in unloaded bodies, all in a 

rate-dependent setting with the simplest possible isotropic model 

of work hardening, relying in no way on non-convexity of any en- 

ergy functional, incremental or otherwise. 

In closing this brief review of related approaches we mention 

the Continuum Dislocation Dynamics framework of Hochrainer and 

collaborators; ( Hochrainer et al., 2007; Hochrainer, 2016; Sandfeld 

and Zaiser, 2015 ) are some representative works. These models are 

developed based on a kinetic theory like framework, starting from 

the assumption that a fundamental statement for the evolution of 

a number density function on the space of dislocation segment po- 

sitions and orientations is available (which is in itself a non-closed 

statement even if one knows completely the rules of physical evo- 

lution of individual dislocations segments of connected lines). Also, 

what a number density of dislocations is supposed to mean for 

a tangled web of dislocation curves in a 3-d volume is not clar- 

ified. On making various assumptions for tractability, the theory 

produces (non-closed) statements of evolution for the averaged 

dislocation density (akin to the mesoscale Nye tensor field), the 

total dislocation density (similar to an appropriate sum of the av- 

eraged Nye tensor density and the Statistical density) and, these 

densities being defined as physical scalars, an associated curvature 

density field. Closure assumptions are made to cut off infinite hier- 

archies, which is standard for averaging based on nonlinear ‘micro- 

scopic equations’, and further closure assumptions for constitutive 

statements are made based on standard thermodynamic arguments 

( Hochrainer, 2016 ). The basic framework does not account for ex- 

act geometrically nonlinear continuum mechanics of deformation 

and stresses appropriate for large deformation plasticity. The mod- 

els have been primarily exercised in situations involving a single 

slip plane. The work in Sandfeld and Zaiser (2015) demonstrates 

some ‘patterning’ in a simplified 2-d setting where total density 

concentrates (by approximately 4 times) in ‘blobs’ (terminology of 

the authors) covering most of the domain, with low densities re- 

stricted to narrow ‘walls’, which is an inversion of what is observed 

in dislocation cells where high dipolar densities concentrate in nar- 

row walls, with low densities (by orders of magnitude) arising in 

cell interiors. 

We also note the finite deformation discrete dislocation plastic- 

ity formulation presented in the works of Deshpande et al. (2003) , 

Irani et al. (2015) . The latter work attempts to address the viola- 

tion of the hypoelastic constitutive equation for stress of the dis- 

location fields in the computational implementation of the model 

proposed in Deshpande et al. (2003) . Both formulations rely heav- 

ily on the superposition of linear elastic stress fields of individual 

dislocations (which seems counter-intuitive in the nonlinear set- 

ting, even for small elastic strain). Unfortunately, we have found 

the formulation in Irani et al. (2015) to be not entirely transparent, 

thus hindering our understanding of the basic theory that is com- 

putationally implemented (compounded with typographical errors, 

e.g. Eqs. (16) and (17) therein that are important to understanding 

the computation of their F e tensor). For example, to what extent a 

constitutive statement like equation (32a) therein is an appropri- 

ate representation of frame-indifferent hyperelastic response, and 

better than the criticism leveled by the authors against the use of 

the (Jaumann rate-based) hypoelastic stress response proposed in 

Deshpande et al. (2003) , is not clear to us. Clearly, the form of the 

strain measure utilized in equation (32a) suggests the use of lin- 

earised elasticity out of the current configuration, and then why 

the classical elastic solutions for dislocations from linear elastic- 

ity should be correct for linearised elasticity out of a configuration 

with stress is not clarified - as is well-understood, the equations 

for linear elasticity and linearised elasticity differ when the config- 

uration on which the problems are solved is under stress, leading 

to important nonlinear geometric effects like buckling instabilities. 

This paper is organized as follows: Section 2 reviews the no- 

tation and terminology used in the paper. Section 3 gives a 

brief introduction to the governing equations of finite deformation 

Mesoscale Field Dislocation Mechanics. The numerical algorithm 

used for computing approximate solutions and brief details of the 

finite element discretization of the equations of finite deformation 

MFDM are presented in Section 4 . Section 5 demonstrates the re- 

sults obtained by using the developed computational framework. 

Finally, some concluding remarks are presented in Section 6 . 

2. Notation and terminology 

Vectors and tensors are represented by bold face lower and 

upper-case letters, respectively. The action of a second order tensor 

A on a vector b is denoted by Ab . The inner product of two vectors 

is denoted by a ·b and the inner product of two second order ten- 

sors is denoted by A : B . A superposed dot denotes a material time 

derivative. A rectangular Cartesian coordinate system is invoked for 

ambient space and all (vector) tensor components are expressed 

with respect to the basis of this coordinate system. ( · ) , i denotes 
the partial derivative of the quantity ( · ) w.r.t. the x i coordinate di- 

rection of this coordinate system. Einstein’s summation convention 

is always implied unless mentioned otherwise. The condition that 

any quantity (scalar, vector, or tensor) a is defined to be b is indi- 

cated by the statement a := b (or b � a ). The symbol |( · )| represents 
the magnitude of the quantity ( · ). 

The symbols grad, div , and curl represent the gradient, diver- 

gence, and curl on the current configuration. For a second order 

tensor A , vectors v , a and c , and a spatially constant vector field 

b , the operations of div, curl , and cross product of a tensor with a 

vector ( × ) are defined as follows: 

(di v A ) · b = di v ( A 

T b ) , ∀ b 

b · (curl A ) c = 

[
curl( A 

T b ) 
]

· c , ∀ b , c 

c · ( A × v ) a = 

[
( A 

T c ) × v 
]

· a ∀ a , c . 

In rectangular Cartesian coordinates, these are denoted by 

(di v A ) i = A i j, j , 
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(curl A ) ri = ε ipq A rq,p , 

( A × v ) ri = ε ipq A rp v q , 

where εijk are the components of the third order alternating ten- 

sor X . I is the second order Identity tensor whose components 

w.r.t. any orthonormal basis are denoted by δij . The vector X ( AB ) 

is defined by 

[ X ( A B ) ] i = ε i jk A jr B rk . 

In this paper, we qualitatively define patterning as the appear- 

ance of inhomogeneous distributions of dislocation density, more 

or less in the entire domain. 

3. Theory 

This section presents a brief description of the governing 

equations and the initial and boundary conditions of finite de- 

formation (Mesoscale) Field Dislocation Mechanics theory. Field 

Dislocation Mechanics (FDM) was developed in Acharya (2001, 

20 03, 20 04) building on the pioneering works of Kröner (1981) , 

Willis (1967) , Mura (1963) , and Fox (1966) . The theory utilizes a 

tensorial description of dislocation density ( Nye, 1953; Bilby et al., 

1955 ), which is related to special gradients of the (inverse) elastic 

distortion field. The governing equations of FDM at finite deforma- 

tion are presented below: 

α̊ ≡ (di v v ) α + 

˙ α − αL T = −curl ( α ×V ) (1a) 

W = χ + grad f ; F e := W 

−1 

curl W = curl χ = −α

di v χ = 0 

} 

(1b) 

d i v 
(
grad ̇ f 

)
= d i v ( α ×V − ˙ χ − χL ) (1c) 

ρ ˙ v = di v T (1d) 

Here, F e is the elastic distortion tensor, χ is the incompatible 

part of W , f is the plastic position vector ( Roy and Acharya, 2006 ), 

grad f represents the compatible part of W , α is the dislocation 

density tensor, v represents the material velocity field, L = grad v 
is the velocity gradient, T is the (symmetric) Cauchy stress ten- 

sor, and ρ is the mass density. The dislocation velocity, V , at any 

point is the instantaneous velocity of the dislocation complex at 

that point relative to the material; at the microscopic scale, the 

dislocation complex at most points consists of single segment with 

well-defined line direction and Burgers vector. At the same scale, 

the mathematical model assigns a single velocity to a dislocation 

junction, allowing for a systematic definition of a thermodynamic 

driving force on a dislocation complex that consistently reduces to 

well-accepted notions when the complex is a single segment, and 

which does not preclude dissociation of a junction on evolution. 

The statement of dislocation density evolution (1a) is derived 

from the fact that the rate of change of Burgers vector content 

of any arbitrary area patch has to be equal to the flux of dislo- 

cation lines into the area patch carrying with them their corre- 

sponding Burgers vectors. Eq. (1b) is the fundamental statement 

of elastic incompatibility and relates the dislocation density field 

to the incompatible part of the inverse elastic distortion field W . 

It can be derived by considering the closure failure of the image 

of every closed loop in the current configuration on mapping by 

W . Eq. (1c) gives the evolution equation for the compatible part 

of the inverse elastic distortion field. It can be shown to be re- 

lated to the permanent deformation that arises due to dislocation 

motion ( Acharya, 2004 ). The field grad f can also be viewed as the 

gradient of the inverse deformation map on the current configu- 

ration for purely elastic deformations. Eq. (1d) is the balance of 

linear momentum (in the absence of body forces). Balance of mass 

is assumed to hold in standard form, and balance of angular mo- 

mentum is satisfied by adopting a symmetric stress tensor. 

Eq. (1) is augmented with constitutive equations for the dislo- 

cation velocity V and the stress T in terms of W and α ( Acharya, 

2004; Zhang et al., 2015 ) to obtain a closed system. It can also be 

succinctly reformulated as 

˙ W = −W L − (curl W ) ×V 

ρ ˙ v = di v T (2) 

but since the system of Hamilton–Jacobi equations in (2) 1 is 

somewhat daunting, we work with (1) instead, using a Stokes- 

Helmholtz decomposition of the field W and the evolution equa- 

tion for α in the form of a conservation law. 

FDM is a model for the representation of dislocation mechan- 

ics at a scale where individual dislocations are resolved. In order 

to develop a model of plasticity that is applicable to mesoscopic 

scales, a space-time averaging filter is applied to microscopic FDM 

( Acharya and Roy, 2006; Acharya, 2011; Babic, 1997 ) and the re- 

sulting averaged model is called Mesoscale Field Dislocation Me- 

chanics (MFDM). For any microscopic field m , the weighted, space- 

time running average field m is given as 

m ( x , t) := 

1 ∫ 
B ( x ) 

∫ 
I(t) w ( x − x ′ , t − t ′ ) d x ′ dt ′ 

×
∫ 
Λ

∫ 
Ω
w ( x − x ′ , t − t ′ ) m ( x ′ , t ′ ) d x ′ dt ′ , 

where Ω is the body and Λ is a sufficiently large interval of time. 

B ( x ) is a bounded region within the body around the point x with 

linear dimension of the spatial resolution of the model to be de- 

veloped, and I ( t ) is a bounded interval contained in Λ. The weight- 

ing function w is non-dimensional and assumed to be smooth in 

the variables x , x ′ , t, t ′ . For fixed x and t, w is only non-zero in 

B ( x ) × I ( t ) when viewed as a function of x ′ and t ′ . 
Assuming that all averages of products are equal to the product 

of averages except for α ×V , the full set of governing equations of 

finite deformation MFDM theory (without inertia) can be written 

as 

α̊ ≡ (di v v ) α + 

˙ α − αL 
T = −curl 

(
α ×V + L p 

)
(3a) 

W = χ + grad f 

curl W = curl χ = −α

di v χ = 0 

}
(3b) 

d i v 
(
grad ̇ f 

)
= d i v 

(
α ×V + L p − ˙ χ − χL 

)
(3c) 

di v T = 0 , (3d) 

where L p is defined as 

L p ( x , t) : = ( α − α( x , t)) ×V ( x , t) 

= α ×V ( x , t) − α( x , t) ×V ( x , t) . (4) 

The barred quantities in (3) are simply the weighted, space-time, 

running averages of their corresponding microscopic fields used in 

(1). The field α is the Excess Dislocation Density (ED). The micro- 

scopic density of Statistical Dislocations (SD) at any point is de- 

fined as the difference between the microscopic dislocation density 

α and its averaged field α: 

β( x , x ′ , t, t ′ ) = α( x ′ , t ′ ) − α( x , t) , 
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which implies 

ρt = 

√ 

ρ2 
g + ρ2 

s 

ρt ( x , t) := 

√ ( | α| 
b 

)2 

( x , t) ; ρg ( x , t) := 

| α( x , t) | 
b 

;

ρs ( x , t) := 

√ ( | β| 
b 

)2 

( x , t) , (5) 

with b the magnitude of the Burgers vector of a dislocation in the 

material, ρt the total dislocation density, ρg the magnitude of ED 

(commonly referred to as the geometrically necessary dislocation 

density), and ρs is, up to a scaling constant, the root-mean-squared 

SD. We refer to ρs as the scalar statistical dislocation density ( ssd ). 

It is important to note that spatially unresolved dislocation loops 

below the scale of resolution of the averaged model do not con- 

tribute to the ED ( α) on space time averaging of the microscopic 

dislocation density, due to sign cancellation. Thus, the magnitude 

of the ED is an inadequate approximation of the total dislocation 

density. Similarly, a consideration of ‘symmetric’ expansion of un- 

resolved dislocation loops shows that the plastic strain rate pro- 

duced by SD, L p (4) , is not accounted for in α ×V , and thus the lat- 

ter is not a good approximation of the total averaged plastic strain 

rate α ×V . 

In MFDM, closure assumptions are made for the field L p and the 

evolution of ρs , as is standard in most, if not all, averaged versions 

of nonlinear microscopic models, whether of real-space or kinetic 

theory type. As such, these closure assumptions can be improved 

as necessary (and increasingly larger systems of such a hierarchy of 

nonlinear pde can be formally written down for MFDM). In this pa- 

per, we adopt simple and familiar closure statements from (almost) 

classical crystal plasticity theory and probe the capabilities of the 

model that results. Following the works of Kocks, Mecking, and 

co-workers ( Mecking and Kocks, 1981; Estrin and Mecking, 1984 ) 

we describe the evolution of ρs through a statement, instead, of 

evolution of material strength g described by (15) ; L p is defined 

by (9) following standard assumptions of crystal plasticity theory 

and thermodynamics. A significant part of the tensorial structure 

of (9) can be justified by elementary averaging considerations of 

dislocation motion on a family of slip planes under the action of 

their Peach–Koehler driving force ( Acharya and Chapman, 2012 ). 

Henceforth, we drop the overhead bars for convenience in refer- 

ring to averaged quantities, and we will only refer to the ‘macroscopic’ 

fields given in (3) . Also, α will be simply referred to as the dislo- 

cation density tensor. Since the system in (3) is not closed, T , L p , 

and V are to be constitutively specified response functions specific 

to materials. 

As shown in Acharya and Zhang (2015) , (3a) and (3b) imply 

˙ W + W L = α ×V + L p (6) 

up to the gradient of a vector field, which is re-written as 

L = 

˙ F e F e −1 + F e ( α ×V + L p ) . 

This can be interpreted as the decomposition of the velocity gra- 

dient into an elastic part, given by ˙ F e F e −1 , and a plastic part given 

by F e ( α ×V + L p ) . The plastic part is defined by the motion of dis- 

locations, both resolved and unresolved, on the current configu- 

ration and no notion of any pre-assigned reference configuration is 

needed . Of significance is also the fact that MFDM involves no no- 

tion of a plastic distortion tensor and yet produces (large) permanent 

deformation . 

3.1. Constitutive equations for T, L p , and V 

MFDM requires constitutive statements for the stress T , the dis- 

location velocity V , and the plastic distortion rate L p . We make the 

model consistent with the minimal, but essential, requirement of 

non-negative dissipation by considering the mechanical dissipation 

D which, in the presence of inertia and body forces, is defined as 

the difference between the power of the applied forces and the 

rate of change of the sum of the kinetic and free energies of the 

system: 

D = 

∫ 
∂Ω

T n · v dA + 

∫ 
Ω
b f · v dV −

˙ ∫ 
Ω

ρ (ψ + 

1 

2 
v · v ) dV , 

where ψ is the specific Helmholtz free-energy of the system, and 

b f is the body force. The Helmholtz free energy of the system per 

unit mass, ψ , is assumed to be the sum of the elastic energy φ( W ) 

density and a term ϒ( α) that is a heuristic representation of the 

averaging of a microscopic core energy, up to the mesoscale: 

ψ = φ( W ) + ϒ( α) . 

The elastic energy per unit mass is specified as 

φ( W ) = 

1 

2 ρ∗ E 
e : C : E e 

E e = 

1 

2 
( C e − I ) ; C e = W 

−T W 

−1 
, 

(7) 

where ρ∗ is the mass density of the pure, unstretched elastic lat- 

tice, and C is the fourth order elasticity tensor, assumed to be posi- 

tive definite on the space of second order symmetric tensors. ϒ( α) 

is specified as 

ϒ( α) = 

1 

2 ρ∗ ε α : α, 

where ε is a material constant that has dimensions of 

stress × length 2 . Using the balances of mass and linear momentum, 

the definition of ϒ( α) , and the evolution equations for W (6) and 

α (3a) , the dissipation can be expressed as 

D = 

∫ 
Ω
T : L d V −

∫ 
Ω

ρ ˙ (φ( W ) + ϒ( α)) d V 

= 

∫ 
Ω

[
T + ρW 

T ∂φ

∂ W 

]
: L d V −

∫ 
Ω

ρX 

[ (
∂φ

∂ W 

)T 

α

] 

·V d V 

−
∫ 
Ω

ρ
∂φ

∂ W 

: L p dV 

+ 

ε

ρ∗

[ ∫ 
Ω

ρ
(
( α : α) I −αT α

)
: L d V + 

∫ 
Ω

ρX 

(
[ curl α] 

T α
)

·V d V 

+ 

∫ 
Ω

ρ curl α : L p ︸ ︷︷ ︸ d V −
∫ 
∂Ω

ρ α : 
(
( α ×V + L p ) × n 

)
d A 

]
. 

(8) 

From the study of solutions to FDM it is known that the core 

energy provides a crucial physical regularization (which allows 

for existence of solutions in mathematically rigorous analysis 

( Acharya and Tartar, 2011 ) and convergence of results with respect 

to mesh refinement ( Zhang et al., 2015 )), and therefore we want to 

keep the simplest possible effect of it in MFDM, in the absence of 

rigorous information on the averaged structure of FDM. Based on 

the above terms in the dissipation, if we assume L p to be in the di- 

rection of its driving force to ensure non-negative dissipation, then 

it can be observed that the presence of curl α in the driving force 

for L p gives rise to a term, in the evolution Eq. (3a) for α, of the 
form −curl(curl α) with a (possibly spatially varying) non-negative 

coefficient. This additional term behaves as a diffusive regulariza- 

tion by a standard identity of vector calculus and the fact that 
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di v α = 0 . Motivated by these considerations related to the dissi- 

pation, we make the following constitutive assumptions for T , V , 

and L p in MFDM. 

Ensuring no dissipation in purely elastic processes, the stress is 

given by 

T = −ρW 

T ∂φ

∂ W 

⇒ T = F e 
[
C : E e 

]
F eT . 

The above expression for the Cauchy stress tensor tacitly assumes 

that ρ
ρ∗ is absorbed in the elastic moduli C , which is assumed to 

be spatially constant in this work. 

Classical crystal plasticity assumes L p to be a sum of slipping on 

prescribed slip systems (cf. Asaro, 1983 ). To augment this assump- 

tion with an additive term in ε curl α as motivated above requires 

the introduction of a mobility coefficient with physical dimensions 

of ( stres s −1 × tim e −1 ) . In the absence of more detailed knowledge, 

simplicity demands that all dissipative processes be linked to a 

common time scale and we do not proliferate material parameters. 

Thus, we assume the stress scale in the mobility to be linked to 

the initial yield strength g 0 , and its time scale to be linked to the 

reciprocal of the average slip system slipping rates. These assump- 

tions result in the coefficient of curl α in L p to be ε
g 0 

1 
n sl 

∑ n sl 
k 

| ̂  γ k | 
(up to a factor ρ

ρ∗ ) and defining l 2 := 

ε
g 0 

we assume L p to be given 

by 

L p = W 

( 

n sl ∑ 

k 

ˆ γ k m 

k 
� n 

k 

) 

sym ︸ ︷︷ ︸ 
ˆ L 
p 

+ 

( 

l 2 

n sl 

n sl ∑ 

k 

| ̂  γ k | 
) 

curl α (9) 

where 

ˆ γ k = sgn (τ k ) ˆ γ0 
k 

( | τ k | 
g 

) 1 
m 

. (10) 

In the above, ( · ) sym 

represents the symmetric part of ( · ), ˆ γ0 is 

a reference strain rate, ˆ γ k represents the magnitude of SD slipping 

rate on the k th slip system, n sl is the total number of slip systems, 

sgn ( τ k ) denotes the sign of the scalar τ k , and g is the material 

strength. The vectors m 

k and n k represent the slip direction and 

the slip plane normal for the k th slip system in the current config- 

uration. These are given as 

m 

k = F e m 

k 
0 

n 

k = F e 
−T 

n 

k 
0 , 

where m 

k 
0 
and n k 

0 
are the corresponding unstretched unit vectors. 

The resolved shear stress τ k on the k th slip system is defined as 

τ k = m 

k · T n 

k . 

The use of the symmetrization in the definition of ˆ L 
p 

is not 

standard, but found to be necessary, following Puri et al. (2011 , 

Section 5.5 ). 

We mention here that the length scale l , introduced in (9) as 

a dimensional consequence of including the core energy follow- 

ing the discussion surrounding (8) , is not responsible for produc- 

ing enhanced size effects and microstructure in MFDM. Rather, 

the ‘smaller is harder’ size effect becomes more pronounced as 

l decreases since its presence reduces the magnitude of the α
field and consequently reduces hardening (15) . It plays a role in 

the details of the microstructural patterns which is explored in 

Section 5.5 , while not being responsible for their generation, as 

shown in Section 5.4 . 

The direction of the dislocation velocity, d , is given by 

d = b −
(
b · a 

| a | 
)

a 

| a | (11) 

(for motivation see Acharya and Roy, 2006; Acharya and Chapman, 

2012 ) with 

T ′ i j = T i j −
T mm 

3 
δi j ; b i := ε i jk T 

′ 
jr F 

e 
rp αpk ; a i := 

1 

3 
T mm 

ε i jk F 
e 
jp αpk . 

(12) 

The dislocation velocity is then assumed to be 

V = ζ
d 

| d | (13) 

with 

ζ = 

μ2 η2 b 

g 2 n sl 

n sl ∑ 

k 

| ̂  γ k | , (14) 

where b is as in (5) , μ is the shear modulus, and η = 

1 
3 is a ma- 

terial parameter. The strength of the material is evolved according 

to (cf. Acharya and Beaudoin, 20 0 0; Beaudoin et al., 20 0 0; Acharya 

and Roy, 2006 ) 

˙ g = 

[
μ2 η2 b 

2(g − g 0 ) 
k 0 | α| + Θ0 

(
g s − g 

g s − g 0 

)]( ∣∣F e α ×V 
∣∣+ 

n sl ∑ 

k 

| ̂  γ k | 
) 

, 

(15) 

where Θ0 is the Stage 2 hardening rate, k 0 is a material constant, 

and g s is the saturation material strength. 

The material parameters ( g 0 , g s , μ, ˆ γ0 , m, Θ0 ) mentioned above 

are part of the constitutive structure of well-accepted models of 

classical plasticity theory. Our model requires 2 unknown fitting 

parameters: l, k 0 , with the latter characterizing the plastic flow re- 

sistance due to ED. The material strength defines the ssd distribu- 

tion (see (5) ) as 

ρs := 

(
g 

ημb 

)2 
. (16) 

We note that for these choices of T , V , and L p 

lim 

ε→ 0 
D = 

∫ 
Ω

ζ
d 

| d | · X [ T F e α] d V + 

∫ 
Ω

n sl ∑ 

k 

τ k ˆ γ k d V 

≥ 0 

(assuming the multiplier of ε within the square parenthesis in 

(8) is bounded in the limit). 

3.2. Boundary conditions 

The incompatibility Eq. (3b) admits a boundary condition of the 

form 

χn = 0 on ∂ Ω, 

where n is the outward unit normal on the outer boundary ∂ Ω
of the current configuration Ω . Such a boundary condition ensures 

vanishing χ in the absence of a dislocation field. The equilibrium 

Eq. (3d) admits standard admissible traction and/or displacement 

boundary conditions. The dislocation evolution Eq. (3a) admits a 

‘convective’ boundary condition of the form ( α ×V + ̂

 L 
p 
) × n = �

where � is a second order tensor valued function of time and 

position on the boundary characterizing the flux of dislocations 

at the surface with unit normal field n satisfying the constraint 

�n = 0 . A no slip or plastically constrained boundary condition is 

modeled by assuming �≡0 . We will also sometimes use a less re- 

strictive boundary condition where we simply evaluate ˆ L 
p × n on 

the boundary (akin to an outflow condition) along with the spec- 

ification of α( V ·n ) on the inflow parts of the boundary (where 

V ·n < 0). This is referred to as the unconstrained case since dis- 

locations are free to exit the domain without any added specifica- 

tion. Eq. (3a) requires the specification of ( l 
2 

n sl 

∑ n sl 
k 

| ̂  γ k | ) curl α × n 
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on the boundary for non zero l . In this work, we assume the input 

flux α( V ·n ) and curl α×n to vanish on the boundary. The evolution 

Eq. (3c) for f uses a Neumann boundary condition of the form 

(grad ̇ f ) n = 

(
α ×V + L p − ˙ χ − χL 

)
n . 

3.3. Initial conditions 

The evolution equations for the dislocation density and f ( (3a) 

and (3c) respectively) require specification of initial conditions on 

the domain. The initial condition for (3a) can be prescribed in the 

following form: α( x , t = 0) = α0 . For this work, we take α0 = 0 . 

The initial condition for (3c) is given as the solution of 

curl χ = −α0 

div χ = 0 
div [ T (W )] = 0 

along with the specification of statically admissible traction bound- 

ary conditions. This corresponds to the determination of f , χ, and 
stresses at t = 0 for a given dislocation density distribution on the 

initial configuration, i.e., the current configuration at t = 0 , and 

will be referred to as the ECDD solve. An auxiliary condition of 
˙ f = 0 at a point is needed to uniquely evolve f from (3c) . 

4. Numerical implementation 

The finite element implementation of the system of equations 

given in (3) has been discussed in Arora (2019), Arora et al. (2019), 

and Zhang (2015) where detailed numerical algorithms, verifica- 

tion, and validation exercises are provided. Here, we briefly de- 

scribe the general flow of the algorithm for the sake of being self- 

contained. 

Along with the system of Eq. (3) a −c , we solve the rate form 

of the equilibrium equation to obtain the material velocity field v , 

which is used to obtain the discrete motion of the body. However, 

this may not satisfy (discrete) balance of forces at each time step. 

Therefore, we use the equilibrium Eq. (3d) to correct for force bal- 

ance in alternate time increments. In the absence of body forces 

and inertia, the equilibrium Eq. (3d) in rate form is Hill (1959) , 

McMeeking and Rice (1975) 

d i v 
(
d i v ( v ) T + 

˙ T − T L T 
)

= 0 . (17) 

This requires specification of velocity and/or statically admissi- 

ble nominal traction rates on complementary parts of the bound- 

ary at all times. Finite Element Method based computational mod- 

eling using MFDM requires the concurrent solution of the system 

of equations in (3) along with Eq. (17) resulting in 10 degrees of 

freedom (DOFs) per node in 2D. This includes 2 unknowns in α
( α13 and α23 ), 4 in χ ( χ11 , χ12 , χ21 , and χ22 ), and 2 each in 

v and f, respectively. The details of the staggered numerical im- 

plementation are discussed in Arora et al. (2019) , which utilizes 

the following numerical schemes: Galerkin FEM for the equilib- 

rium Eq. (3d) , the rate form of the equilibrium Eq. (17) , and evolu- 

tion equation for the compatible part of the inverse elastic distor- 

tion (3c) ; Least-squares FEM ( Jiang, 2013 ) for the incompatibility 

Eq. (3b) ; and Galerkin-Least-Squares FEM ( Hughes et al., 1989 ) for 

the dislocation evolution Eq. (3a) . 

The numerical scheme presented in Arora et al. (2019) is inde- 

pendent of the constitutive assumptions made for L p and V ; here, 

we use the specifications in Eqs. (9) and (13) , respectively. 

4.1. Algorithm 

The system of equations (3) is solved by discretely evolving in 

time. A combination of explicit-implicit schemes have been chosen 

to evolve the system variables in time (cf. Roy and Acharya, 2006 ). 

An efficient time stepping criteria based on plastic relaxation, and 

purely elastic and ‘yield strain’ related physical model parameters, 

has been defined. A ‘cutback’ algorithm has been designed and is 

used to ensure a stable, robust, and accurate evolution of plastic 

response. The algorithm for solving the system of Eq. (3) is as fol- 

lows: 

1. Given the material parameters and initial condition on α, ECDD 

is solved to specify f (t = 0) , χ(t = 0) and the initial stresses on 

the configuration at time t = 0 . In any given time step [ t n , t n +1 ] 

with the current configuration and state known at time t n and 

with ( · ) n representing the quantity ( · ) at time t n , 

2. The rate form (17) of the equilibrium Eq. (3d) is solved on the 

configuration at t n to obtain the material velocity field v in the 

interval [ t n , t n +1 ] . The velocity field is used to obtain the cur- 

rent configuration at time t n +1 . 

3. α is evolved from (3a) on the configuration at time t n to define 

the dislocation density field, αn +1 , on the configuration at time 

t n +1 . 

4. χn +1 is defined on the configuration at time t n +1 by solving 

(3b) on the same configuration with αn +1 as data. 

5. The nodal (reaction) forces on the part of the boundary with 

specified boundary conditions on material velocity are evalu- 

ated as follows: assume the nodal forces are known at time 

t n . On solving Eq. (17) on the configuration at t n , a (reaction) 

nodal force rate field on the velocity-Dirichlet boundary is gen- 

erated. For each node on this part of the boundary, this reac- 

tion force rate physically corresponds to the spatial integration 

of the nominal/First Piola Kirchhoff traction rate, based on the 

configuration at time t n as reference, over the area patch (on 

the same configuration) that contributes to the node in ques- 

tion. Since such a nodal force rate, viewed as a discrete function 

of time, corresponds to the evolving current configuration of 

the body (recall the definition of the First Piola-Kirchhoff stress 

tensor), we simply (discretely) integrate it in time and accumu- 

late the result on the known nodal force at time t n to obtain 

the nodal force (on the velocity-Dirichlet-part of the boundary) 

at time t n +1 . 

6. f n +1 is determined as follows: 

• The evolution Eq. (3c) for f is solved on the configuration at 
time t n to define f n +1 on the configuration at time t n +1 . 

• In alternate increments, the equilibrium Eq. (3d) is solved 

on the configuration at time t n +1 for the field f , in order 

to satisfy balance of forces. The problem is posed as a trac- 

tion boundary value problem with nodal forces calculated 

in step 5 above. f n +1 obtained by solving the evolution 

Eq. (3c) serves as the guess for the Newton-Raphson based 

scheme. 

Conventional plasticity theories do not account for the plastic 

strain rate of the (excess) dislocation motion nor the boundary 

conditions related to ED flow at the boundaries of the body. In 

MFDM, we can recover classical plasticity theory by setting V = 0 

and l = 0 in the system given in (3), k 0 = 0 in (15) , and treating 

the external boundary as plastically unconstrained as mentioned 

in Section 3.2 . 

MFDM may be viewed as a thermodynamically consistent strain 

gradient plasticity theory without higher order stresses. 

5. Results 

The formulation presented in Section 4 above is implemented 

in a C ++ code based on the deal.ii ( Arndt et al., 2017 ), P4est 

( Burstedde et al., 2011 ), PetSc ( Balay et al., 2017 ), and MUMPS 

( Amestoy et al., 2001 ) frameworks to carry out finite-element 

computations. Bilinear elements are employed to approximate all 

fields. 
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Table 1 

Details of finite element mesh used in 

computations. 

Sample Size Mesh 

(1 μm) 2 70 ×70 

(5 μm) 2 70 ×70 

(100 μm) 2 70 ×70 

Fig. 1. Schematic layout of a typical model geometry. 

Section 5.1 focuses on the case when multiple slip systems are 

present in the body. We demonstrate size effects and the emer- 

gence of dislocation patterns and dipolar dislocation walls. We 

also study the effect of orientation on the microstructural pat- 

terns and the macroscopic stress-strain response of the material. 

In Section 5.2 we look at the microstructural patterning and ef- 

fect of orientation for the special case when only one slip sys- 

tem is present. Section 5.3 briefly discusses the convergence of 

microstructural patterns and overall stress-strain response with re- 

spect to mesh refinement. Section 5.4 presents a necessary condi- 

tion for pattern formation in the model. Finally, Section 5.5 focuses 

on the effect of the length scale l on microstructural patterns. 

Simulations are performed on square domains of sizes (1 μm) 2 , 

(5 μm) 2 , and (100 μm) 2 . The details of the meshes employed are 

given in Table 1 with rationale presented in Section 5.3 . Velocity 

b.c.s corresponding to overall simple shear are imposed for a plane 

strain problem. At any point P = (x 1 , x 2 ) on the boundary a veloc- 

ity of v 2 = 0 and v 1 = 

ˆ Γ y (x 2 ) is imposed, where y ( x 2 ) is the height 

of the point P from the bottom surface as shown in the schematic 

of the problem in Fig. 1 . ˆ Γ is the applied shear strain rate. 

The conventional plasticity solution plotted in the figures below 

is obtained by numerically integrating the evolution equation for 

the elastic distortion tensor F e given by (18) to obtain the Cauchy 

stress response for an imposed spatially homogeneous velocity gra- 

dient history, L , corresponding to a simple shearing motion: 

˙ F 
e = L F e − F e L p F e =: ˜ f ( F e , g) 
˙ g = 

˜ g ( F e , g) 
(18) 

where L p is defined from (9) with l = 0 , and ˜ g is given by (15) with 

k 0 = 0 . 

The stress-strain behavior of the body is modeled by plotting 

the averaged T 12 on the top surface which is denoted by τ in 

the subsequent figures. τ is calculated by summing the tangential 

components of the nodal reaction force on the top surface and 

then dividing by the current area (line length) of the surface. The 

strain Γ at any time t is given as Γ = 

ˆ Γ t . All material parameters 

used in the simulations are presented in Table 2 . E and ν denote 

the Young’s modulus and Poisson’s ratio, respectively. 

Table 2 

Default parameter values used in com- 

putations. 

Parameter Value 

b 4.05 ̊A 

g 0 17.3 MPa 

g s 161 MPa 

Θ0 392.5 MPa 

m .03 

E 62.78 GPa 

ν .3647 
ˆ Γ 1 s −1 

ˆ γ0 1 s −1 

k 0 20 

l 
√ 

3 × 0 . 1 μm 

Fig. 2. Size effect under simple shear. C: Constrained Boundaries U: Unconstrained 

Boundaries. 

5.1. Dislocation microstructure and size effect in multiple slip 

For multiple slip, we assume that there are 3 slip systems 

present in the crystal, oriented at θ0 
◦
, −θ0 

◦
, and 0 ◦ from the x axis 

as shown above in Fig. 1 . The slip directions and normals for the 3 

slip systems are given as 

m 

1 
0 = ( cos (θ0 ) , sin (θ0 )) n 

1 
0 = (− sin (θ0 ) , cos (θ0 )) 

m 

2 
0 = ( cos (0) , sin (0)) n 

2 
0 = (− sin (0) , cos (0)) 

m 

3 
0 = ( cos (θ0 ) , − sin (θ0 )) n 

3 
0 = ( sin (θ0 ) , cos (θ0 )) . 

Thus, θ0 characterizes the orientation of all the slip systems at 

t = 0 . 

5.1.1. Size effect 

We demonstrate size effects in elastic-plastic material behavior 

up to large strains for both the plastically constrained and uncon- 

strained cases defined in Section 3.2 . 

Fig. 2 shows the averaged stress-strain ( τ vs. Γ ) response for 

all the domain sizes and both boundary conditions (plastically con- 

strained and unconstrained), demonstrating the ‘smaller is harder’ 

size effect under simple shear. These results are in qualitative 

agreement with experimental observations ( Fleck et al., 1994; Liu 

et al., 2012; Stelmashenko et al., 1993; Ebeling and Ashby, 1966 ). 

For the unconstrained case, the response of the larger domain 

size of (100 μm) 2 overlaps the conventional plasticity solution. 

This is expected as the larger sample develops no inhomogeneities 

in deformation and therefore | α| ≈0. However, the smaller do- 

main sizes (1 μm) 2 and (5 μm) 2 develop inhomogeneity at small 

strains of (approximately) 0.5% and 1.7%, respectively. This (con- 

trolled) instability leads to deviation from the homogeneous 

solution, which in turn increases the local hardening, resulting in 

harder response than the conventional solution. This instability 

of the time-dependent spatially homogeneous simple shearing 
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Fig. 3. ρg for the (1 μm) 2 domain size at different strains with plastically constrained boundaries and θ0 = 30 ◦ ( n sl = 3 ). 

solution for the MFDM theory is discussed in Roy and 

Acharya (2006) , Das et al. (2016) at small deformation. 

The (1 μm) 2 domain size for the plastically constrained case dis- 

plays the hardest response. This is because the constrained bound- 

ary conditions lead to gradients in the plastic strain rate, L p , near 

the boundaries, as explained below, and these gradients are larger 

for the smaller domain sizes (by simple scaling arguments), this 

resulting in greater hardening through (15) , apart from associated 

internal stress effects. Of course, the presence of α also gives rise 

to additional plastic strain rate of the form α×V in MFDM which 

is a softening effect, but the net effect is one of hardening in the 

overall response. 

We now explain the reason for the development of inhomo- 

geneity in the α field with the onset of plasticity for the case of 

constrained boundary conditions. This emergence of inhomogene- 

ity can be attributed to the fact that the no-flow boundary con- 

dition induces gradients in L p which lead to the evolution of α in 

the domain. For example, taking n = e 2 on the top boundary with 

α = 0 instantaneously, a no-flow boundary implies 

( L p × n ) = 0 on ∂�

⇒ 

⎡ 

⎣ 

0 0 L p 
11 

0 0 L p 
21 

L p 
33 

0 0 

⎤ 

⎦ = 0 (19) 

on the top/bottom boundary whereas there is no such constraint 

on L p in the interior of the domain. This induces a gradient in the 

L 
p 
21 

and L 
p 
11 

components of the plastic strain rate L p in the x 2 di- 

rection near the top and bottom boundaries, which contributes to 

the development of α23 and α13 in the domain. On the left and 
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Fig. 4. ρg for the (1 μm) 2 domain size at different strains with plastically constrained boundaries and θ0 = 30 ◦ ( n sl = 3 ). 
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Fig. 5. (a) α13 (b) α23 for the (1 μm) 2 domain size at 60% strain with plastically constrained boundaries and θ0 = 30 ◦ ( n sl = 3 ). The corresponding ρg is shown in Fig. 4 . 

Fig. 6. Comparison of ρg for the (a) (1 μm) 2 (b) (5 μm) 2 domain sizes with plastically constrained boundaries at 40% strain and θ0 = 30 ◦ ( n sl = 3 ). 

Fig. 7. ρg distribution for the (5 μm) 2 domain size with plastically constrained boundaries at (a) 0.5% (b) 1% strain and θ0 = 30 ◦ ( n sl = 3 ). 
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Fig. 8. ssd distribution for the (1 μm) 2 domain size at different strains with plastically constrained boundaries and θ0 = 30 ◦ ( n sl = 3 ). 

right boundaries similar considerations hold, but weakened with 

the progress of deformation, as can be seen below. The normal, 

n = (n 1 , n 2 ) , changes direction with deformation and 

( L p × n ) = 0 on ∂Ω

⇒ 

⎡ 

⎣ 

0 0 L p 
11 
n 2 − L p 

12 
n 1 

0 0 L p 
21 
n 2 − L p 

22 
n 1 

L p 
33 
n 2 L p 

33 
n 1 0 

⎤ 

⎦ = 0 (20) 

which implies that at small deformation ( n 1 = ±1 , n 2 = 0 ), L 
p 
12 

is 

constrained at the boundary. This gives rise to a gradient of L 
p 
12 

in 

the x 1 direction which contributes to the development of α13 . As 

the normal changes direction, the linear constraints L 
p 
11 
n 2 − L 

p 
12 
n 1 = 

0 and L 
p 
21 
n 2 − L 

p 
22 
n 1 = 0 have to hold which allow more freedom 

in accommodating deformation but, nevertheless, gradients do de- 

velop. 

Before moving on to presenting the results for the emergence 

of dislocation patterns in the presence of external loads, we ver- 

ify that the solution for the larger domain size is close to the one 

obtained from conventional plasticity theories. For the larger do- 

main size of (100 μm) 2 with unconstrained boundaries, the disloca- 

tion density norm at 40% strain is small and homogeneous, which 

is similar to the prediction of conventional plasticity theories. The 

stress strain curve therefore also overlaps the conventional plastic- 

ity result as shown in Fig. 2 . 

5.1.2. Dislocation microstructure 

We now present results of stressed dislocation patterns in crys- 

tal plasticity at finite deformation using MFDM. Fig. 4 shows the 

norm of the dislocation density, ρg , at various strains for the 

(1 μm) 2 domain size for plastically constrained boundaries. It can 

be observed that 
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Fig. 9. Unloaded stressed microstructure (a) ρg (b) α13 (c) α23 for the (1 μm) 2 domain size with plastically constrained boundaries and θ0 = 30 ◦ (n sl = 3) . 

Fig. 10. Elastic energy density for the (1 μm) 2 domain size with plastically constrained boundaries and θ0 = 30 ◦ (n sl = 3) (a) before (b) after unloading. 

• Microstructural patterns start developing even before 2% 

strain for the (1 μm) 2 domain size. This is demonstrated in 

Fig. 3 where ‘bulk’-inhomogeneity in | α| appears as early as 
∼0.6% strain) and has a variation of an order of magnitude 

in the interior of the domain. 

• The distribution at 5% strain seems to resemble the block 

dislocation microstructure shown in Jin and Winter (1984) . 

• The dislocation density magnitude increases in the domain 

up to 10% strain. However, ρg diminishes in the interior with 

increasing strain and becomes quite small at 40% strain. 

• At 60% strain, the sample develops two prominent (dipolar) 

dislocation walls enclosing a distinct region of low disloca- 

tion density (by nearly two orders of magnitude), forming a 

dislocation cell-like structure. The dipolar nature of the walls 

is confirmed by looking at the magnitude of the individual 

dislocation components, α13 and α23 as shown in Fig. 5 a and 

b respectively. 

• The Burgers vector, b , content of any area patch A is given 
by 

b = 

∫ 
A 

αn d A . 

An important point to note here is that in the case of plas- 

tically constrained boundaries, there is no flux of ED or SD 

from the boundary into the domain. Therefore, in the ab- 

sence of any inflow or outflow flux of dislocations, and the 

α evolution being a conservation law (3a) for Burgers vec- 

tor, the total Burgers vector content of the whole body has 
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Fig. 11. Cauchy stress norm for the (1 μm) 2 domain size with plastically constrained boundaries and θ0 = 30 ◦ (n sl = 3) (a) before (b) after unloading. 

Fig. 12. ρg at different strains for the (1 μm) 2 domain size with plastically unconstrained boundaries and θ0 = 30 ◦ (n sl = 3) . 

to remain constant in time. Since, the initial Burgers vector 

content was 0 (dislocation free at t = 0 ), the dislocation mi- 

crostructure needs to be such that the Burgers vector (for 

the whole domain) remains 0 at all times, which makes the 

appearance of a distribution with opposite signs inevitable 

as shown in Fig. 5 . Of course, that dipolar walls should be 

produced is not a consequence of the conservation law and 

a somewhat realistic outcome of our model. 

The microstructural patterns for the domain size of (5 μm) 2 

are significantly different from those of (1 μm) 2 domain size. 

Fig. 6 shows the comparison of the microstructure obtained for the 

(1 μm) 2 and (5 μm) 2 domain sizes at 40% strain. The dislocation 

density is generated because of the constrained boundary condi- 

tions (as explained earlier in the discussion surrounding (19) and 

(20) ) for both the domain sizes, but for the (5 μm) 2 domain the 

accumulation occurs only near the boundary. The difference can 

be understood by noting that the sum of the widths of the two 

boundary layers in the (5 μm) 2 domain add up to almost the en- 

tire linear dimension of the (1 μm) 2 domain. Assuming the patterns 

have an intrinsic length scale in the submicron range, as substanti- 

ated by the (1 μm) 2 results, dislocation patterns are likely to occur 

within the boundary layers of the (5 μm) 2 domain. 

At finite strains, the accumulation of dislocations develops an 

asymmetry along the boundaries for the (5 μm) 2 domain size. This 

is because of the change in orientation of the boundary normal 

with deformation at the left and right boundaries. This is corrob- 

orated by Fig. 7 where the dislocation density distribution is sym- 

metric at small applied strain (the asymmetry in Fig. 7 persists at 

large applied strain). 
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Fig. 13. ρg distribution for the (1 μm) 2 domain size at different strains with plastically constrained boundaries and θ0 = 45 ◦ ( n sl = 3 ). 

5.1.3. ssd distribution 

A large part of the plastic strain rate at mesoscales comes from 

expansion of unresolved dislocation loops that constitute SD. The 

ssd, ρs , given by Eq. (16) in MFDM, is proportional to the root- 

mean-square of the SD. Fig. 8 presents the distribution of ssd in 

the domain for the (1 μm) 2 sample size with plastically constrained 

boundaries. The distribution is mildly patterned in the domain, 

with magnitude increasing with strain. There is a variation of at 

least an order of magnitude in the domain at all strain levels. 

5.1.4. Unloaded stressed microstructures 

The (1 μm) 2 domain is unloaded from 60% strain by revers- 

ing the loading direction. The boundary conditions for velocity 

are taken as v 2 = 0 and v 1 = − ˆ Γ y until τ (averaged stress on 

the top surface) becomes zero. Then, we decrease the nodal reac- 

tion forces steadily over time until a tolerance of max j { abs (F j ) } < 

10 −4 × (g 0 h ) is reached, where {abs( F j )} refers to the absolute 

Fig. 14. Stress-strain response for the (1 μm) 2 domain size for θ0 = 30 ◦ and θ0 = 

45 ◦ ( n sl = 3 ). 
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Fig. 15. ρg for the (5 μm) 2 domain size at 1% and 7% strain with plastically constrained boundaries and θ0 = 30 ◦ ( n sl = 1 ). 

Fig. 16. (a) α13 (b) α23 for the (5 μm) 2 domain size at 7% strain with plastically constrained boundaries and θ0 = 30 ◦ ( n sl = 1 ). 

Fig. 17. ρg for the (5 μm) 2 domain size at different strains with plastically constrained boundaries and θ0 = 45 ◦ ( n sl = 1 ). 

value of the j th entry in the nodal reaction force array { F }, de- 

fined in Section 4.1 , with size equal to number of degrees of free- 

dom where (material) velocity Dirichlet-boundary conditions are 

applied, and h is the element size. Thereafter, we let the system 

achieve thermodynamic equilibrium by requiring all evolution, i.e., 

of α, f , g , to become small. Hence, if at all, these microstructures 

evolve very slowly. 

The ρg distribution on the unloaded configuration is shown in 

Fig. 9 a. The α13 and α23 components of the dislocation density 

tensor are shown in Fig. 9 b and c, respectively. 
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Fig. 18. Stress-strain response for the (5 μm) 2 domain size for plastically con- 

strained boundaries and θ0 = 30 ◦ and θ0 = 45 ◦ ( n sl = 1 ). 

Fig. 19. Convergence in stress-strain response for the (1 μm) 2 and (5 μm) 2 do- 

main sizes with plastically constrained boundaries for coarse and fine meshes 

( θ0 = 30 ◦, n sl = 3 ). 

Fig. 20. Convergence in stress-strain response for the (1 μm) 2 domain size with 

plastically constrained boundaries for coarse and fine meshes ( θ0 = 45 ◦, n sl = 3 ). 

In Fig. 10 , we plot the elastic energy density in the domain, 

given by ρφ (7) , before and after the unloaded equilibration. The 

energy density variation in the body after unloaded equilibration 

is at least an order of magnitude smaller in most of the interior of 

the domain than the energy density before unloading. 

Fig. 11 shows the non-dimensionalized norm of the stress field 

in the domain before and after unloaded equilibration. It can be 

seen that the body is not stress-free after equilibration, and is 

stressed upto ≈6 times the initial yield strength g 0 . The corre- 

sponding plastic strain rate magnitudes, ˆ γ k for k th slip system, are 

found to be negligible, 
| ̂ γ k | 
ˆ γ0 

≈ 10 −8 . 

Hence, we conclude that the unloaded stressed microstructures 

are kinetically trapped, (computational) metastable equilibrium so- 

lutions of the theory. 

Fig. 21. Microstructure for the (1 μm) 2 domain size at 60% strain with plastically constrained boundaries and θ0 = 30 ◦ ( n sl = 3 ): (a) ρg (b) α13 (c) α23 computed with the 

coarse mesh, (d) α23 computed with the fine mesh. 
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Fig. 22. ρg for the (1 μm) 2 domain size at different strains with plastically constrained boundaries on the fine mesh with θ0 = 30 ◦ (n sl = 3) . 

We remark that the entire class of ED distributions arising from 

spatially heterogeneous rotation distributions in unloaded bodies con- 

stitute exact equilibria of our model , since they result in vanishing 

stress fields. This results in vanishing ˆ γ k on any slip system which 

implies V = 0 and L p = 0 from (14) and (9) , respectively, and con- 

sequently α, f , g cease to evolve from such states. 

Please cite this article as: R. Arora and A. Acharya, Dislocation pattern formation in finite deformation crystal plasticity, International 

Journal of Solids and Structures, https://doi.org/10.1016/j.ijsolstr.2019.02.013 

https://doi.org/10.1016/j.ijsolstr.2019.02.013


18 R. Arora and A. Acharya / International Journal of Solids and Structures xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: SAS [m5G; March 12, 2019;12:58 ] 

Fig. 23. Results from the coarse mesh on left, and the fine mesh on right: Similarity of patterns for the (1 μm) 2 domain size with plastically constrained boundaries and 

θ0 = 30 ◦ ( n sl = 3 ). 

5.1.5. Microstructure with unconstrained boundary conditions 

We demonstrate that the emergence of patterning for the 

(1 μm) 2 domain size is not dependent on the condition that the 

boundaries be plastically constrained. Fig. 12 shows the dislocation 

pattern in the (1 μm) 2 domain size at different strains with un- 

constrained boundaries ( θ0 = 30 ◦, n sl = 3 ). After an initial burst at 

relatively small strains, the patterns again become pronounced at 

60% strain as was the case for constrained boundaries presented 

Fig. 4 . 

5.1.6. Effect of slip system orientation on microstructure and stress 

response 

We now explore the question of variation in the microstruc- 

tural patterns when the initial lattice orientation, θ0 , is changed. 

Keeping all parameters as in Table 2 except for setting θ0 to 45 
◦, 

we obtain microstructural patterns for the (1 μm) 2 domain size 

shown below in Fig. 13 that are very similar to the microstructure 

in Fig. 4 obtained for θ0 = 30 ◦. This is because the applied averaged 
simple shear deformation can be accommodated by three indepen- 
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Fig. 24. Distribution of ρg for the (1 μm) 2 domain size at different strains with k 0 = 0 and plastically constrained boundaries (θ0 = 30 ◦, n sl = 3) . 

dent slip systems regardless of orientation (in fact two suffices for 

incompressible velocity fields). 

Fig. 14 presents a comparison of the stress-strain plots for the 

(1 μm) 2 domain size when the orientation of the slip system is 

changed from θ0 = 30 ◦ to θ0 = 45 ◦. This change in orientation re- 
sults in a harder stress-strain response which can also be seen in 

corresponding responses modeled by conventional theory. 

5.2. Dislocation microstructure in single slip 

Motivated by the approximate invariance of the microstructural 

patterns with respect to crystal orientation and our conjecture in 

Section 5.1.6 that the issue is related to the accommodation of the 

applied average deformation (rate) field by the plastic slip systems 

available, we now consider a body with only a single slip sys- 

tem. The hypothesis to be tested is that in this scenario the ap- 

plied deformation cannot be accommodated, thus leading to higher 

stresses and elastic incompatibilities, the degree of which should 

depend on the slip system orientation with respect to the applied 

simple shear. By ‘accommodation’ here we mean that the tenso- 

rial direction of the simple shearing motion defined by the applied 

boundary conditions can be represented as a linear combination 

of the evolving slip-system dyads of the material, assuming active 

slip systems. 

As before, the initial orientation of the slip system will be de- 

fined by θ0 , which is the angle of the slip direction from the x 1 
axis. The initial slip direction and normal for the slip system is 

given as 

m 

1 
0 = ( cos (θ0 ) , sin (θ0 )) n 

1 
0 = (− sin (θ0 ) , cos (θ0 )) . 

5.2.1. Dislocation microstructure 

We plot the microstructure for the (5 μm) 2 domain size at 5% 

strain in Fig. 15 for θ0 = 30 ◦. We can see that for the case of a 

single slip system, the patterns in the (5 μm) 2 domain size are very 

different from those for the 3-slip-systems case (shown in Fig. 6 b). 

This can be attributed to the fact the the deformation now is much 

more constrained due to the presence of only a single slip system. 

In contrast to Fig. 6 b, cell structures form in the interior of the 

domain at 5% strain. Therefore, these observations substantiate our 

conjecture related to accommodation. 

Fig. 16 shows the individual components of the dislocation den- 

sity tensor for (5 μm) 2 domain size at 5% strain. We can notice 

monopolar walls, of both types ( α13 and α23 ) of dislocations, form- 

ing in the interior of the domain. If we relate these to the norm 

of the dislocation density tensor shown in Fig. 15 , we can see 

that these monopolar walls are the boundary of the cell structure 

formed in the center of the domain. Of note is also the dipolar wall 

in kink orientation ( Asaro, 1983 , Section IV A) to the primary (and 

only) slip plane. 

5.2.2. Effect of slip system orientation on microstructure and stress 

response 

Here we explore the change in the microstructural pattern for 

the (5 μm) 2 domain size when the orientation of the slip system 

is changed from 30 ◦ to 45 ◦. Fig. 17 shows the obtained patterns 

for θ0 = 45 ◦. It can be seen that the ρg becomes significant only 

at strains larger than 5%. This is because at small deformation, the 

resolved shear stress on the slip system, with instantaneous orien- 

tation denoted by θ , is given as τ = m · T n = T 12 cos (2 θ ) which is 

small for θ ≈45 ◦ so that the applied deformation has to be elas- 

tically accommodated. As the deformation progresses, the lattice 
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rotation affects the slip system orientation θ . This change in ori- 
entation of the slip system produces a small plastic strain rate on 

it and results in the development of ED because of the plastically 

constrained boundary condition as explained earlier in the discus- 

sion surrounding (19) and (20) . However, even though the plastic 

strain gradients are large, the plastic strain itself is small enough 

to not cause any noticeable change from elastic behavior in the 

stress-strain response. 

A comparison of the stress-strain behavior for the (5 μm) 2 do- 

main size when the initial orientation θ0 of the slip system is 

changed from 30 ◦ to 45 ◦ is presented in Fig. 18 . As can be seen, the 

response is almost 50 times harder than the corresponding data 

shown in Fig. 2 . As already explained above, this is the result of 

the elastic accommodation of the initial deformation. 

5.3. Convergence 

This section deals with the study of convergence in stress- 

strain response and microstructural patterns obtained in 

Section 5.1 ( n sl = 3 ). 

5.3.1. Stress-strain response 

We study the convergence of the stress-strain responses for 

the (1 μm) 2 and (5 μm) 2 domain sizes with plastically constrained 

boundaries. The details of the meshes used in this section are as 

follows. For the (1 μm) 2 and (5 μm) 2 domain sizes, we use two uni- 

form meshes of 70 ×70 and 140 ×140 elements, referred to as the 

coarse and fine meshes, respectively. 

The averaged stress-strain plot for the case when the initial ori- 

entation θ0 is 30 
◦ is plotted in Fig. 19 . The stress strain plots (al- 

most) overlap upto 40% strain for (1 μm) 2 domain size. The maxi- 

mum difference (at 40% strain) in the stress-strain curve is 2.65%, 

and the difference at (28%) strain is 5.13% for the smaller sam- 

ple. For the case when θ0 = 45 ◦, the stress-strain plots for the 
(1 μm) 2 sample size overlap up to 40% strain and there is no dis- 

cernible difference between the results obtained using coarse and 

fine meshes as shown in Fig. 20 . 

The unconstrained cases represent a more conservative simu- 

lation scenarios with smaller gradients than the constrained case, 

and hence the same mesh sizes suffice for them. 

5.3.2. Dislocation microstructure 

We discuss convergence of the microstructural patterns for the 

specific case of Section 5.1 wherein n sl = 3 and θ0 = 30 ◦ (we be- 

lieve that the same arguments apply to Section 5.2 as well). 

The norm of the dislocation density ρg and the components of 

α ( α13 and α23 ) for the (1 μm) 2 domain size at 60% strain for the 

coarse mesh are shown in Fig. 21 a,b and c, respectively. The local- 

ized concentrations are not aligned with the mesh. Moreover, the 

signed components are spread over more than 2 elements in the 

mesh. Similar observation can also be made for the microstructure 

on the refined mesh, as shown in Fig. 21 d. 

However, it is also clear, from a comparison of Figs. 4 and 22 , 

that even though the stress-strain curves converge for the coarse 

and the fine meshes, the microstructures are not converged for 

the mesh sizes considered. Nevertheless, we show that there are 

similarities in the microstructures obtained for the fine and coarse 

meshes considered at different levels of applied strain, as shown 

in Fig. 23 . 

5.4. A necessary condition for microstructural patterns 

Our model predicts inhomogeneous distributions of dislocations 

leading to the formation of microstructural patterns such as dipo- 

lar dislocation walls and cell structures. The discussion surround- 

ing (19) and (20) explains the reason for the generation of disloca- 

Fig. 25. Stress strain response for different values of l for the (1 μm) 2 domain size 

with plastically constrained boundaries ( θ0 = 30 ◦, n sl = 3 ). 

tion density in the constrained case, but the results of the uncon- 

strained case in Section 5.1.5 begs the question of the real reason 

for the development of patterns in MFDM. 

In Roy and Acharya (2006) , using the small deformation variant 

of MFDM, mild patterns were obtained for the (1 μm) 2 domain size 

with constrained and unconstrained boundaries. To understand the 

issue, a simplified system in 1 space dimension was analyzed in 

Roy and Acharya (2006 , Section 4.2.1) and linearized weak hyper- 

bolicity of the homogeneous state was pointed out as a possible 

reason for giving rise to a (controlled) instability making the sys- 

tem sensitive to perturbations and leading to the formation of pat- 

terns. The homogeneous state may be thought of as a situation 

where the α and g evolution ( Eqs. (3a) and (15) respectively) are 

uncoupled from each other instantaneously, which leads to the hy- 

pothesis that k 0 = 0 may lead to the suppression of patterns. 

This hypothesis, i.e. k 0 = 0 suppresses patterns, was tested in 

Das et al. (2016) using a simple 1 - d ansatz, and it was again ob- 

served that the microstructure vanishes in the absence of any cou- 

pling between the dislocation transport (3a) and the strength evo- 

lution Eq. (15) . 

Here, we test the same hypothesis in the finite deformation 

setting. k 0 = 0 is assumed, with all other parameters taken from 

Table 2 along with θ0 = 30 ◦ and n sl = 3 . Fig. 24 shows the distri- 

bution of ρg at different strains under such a scenario. Comparing 

Fig. 24 with Fig. 4 , we notice that the dislocation patterns entirely 

change when k 0 = 0 ; they are mildly patterned with much of the 

dislocations accumulated near the boundary similar to the case of 

the (5 μm) 2 sample size shown in Fig. 6 b. Therefore, we conclude 

that a necessary condition for patterning in full finite deformation 

MFDM is the coupling between equations of dislocation transport 

and evolution of strength evolution through k 0  = 0. 

5.5. Effect of the length scale, l 

Here, we look at the effect of l , defined in (9) , on the mi- 

crostructure obtained during simple shearing of the (1 μm) 2 sam- 

ple size with constrained boundaries, θ0 = 30 ◦, and n sl = 3 , with 

all other parameters as in Table 2 . 

We first look at the variation in stress-strain response for differ- 

ent values of l shown in Fig. 25 . A decrease in the value of l results 

in stronger response. As already explained, this is due to the fact 

that a larger l decreases the magnitude of α in the domain and 

consequently leads to smaller hardening (15) . 

Next, we look at the effect of l on the microstructural patterns 

shown in Fig. 26 . It can be seen that increasing the value of l 

makes a noticeable difference in the applied strain where quali- 

tatively similar patterns of dislocations are formed. We notice that 

for l = 2 . 5 × 0 . 1 μm we get several dislocation cells in the domain 

at 65% strain. Similar and even more intense structures can be no- 
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Fig. 26. Distribution of ρg for the (1 μm) 2 domain size with plastically constrained boundaries ( θ0 = 30 ◦, n sl = 3 ) (a) l = 

√ 

2 × 0 . 1 μm (b) l = 

√ 

3 × 0 . 1 μm (c) l = 2 . 2 × 0 . 1 μm 

(d) l = 2 . 5 × 0 . 1 μm . 

ticed for l = 

√ 

2 × 0 . 1 μm at 53% strains. Therefore, we can con- 

clude that similar microstructures form at comparatively smaller 

strains as l is decreased, and the distribution has higher magnitude 

on average as well. 

6. Concluding remarks 

We have presented a first model of mesoscale crystal plasticity 

of unrestricted geometric and material nonlinearity in the litera- 

ture, and used a finite element implementation of it to demon- 

strate dislocation patterning as well as size effects. The implemen- 

tation is quite efficient, and a typical 2-d simulation up to 60% 

strain on the meshes shown in Table 2 takes an average wall- 

clock time of 5, hours when running on 1 node comprising 24 pro- 

cessors. Interesting and realistic microstructural features of plastic 

response have been shown to be within the qualitative purview 

of the model, which may be considered a minimal enhancement 

of classical crystal plasticity to account for what are commonly 

known as geometrically necessary dislocations. The general ideas 

involved in the development of the mesoscale model lend them- 

selves to more refined descriptions, obviously with concomitant 

added cost. 

While in this paper we have focused on dislocation microstruc- 

tures that are decoupled from deformation microstructures, it is 

not our intent to downplay the importance of the latter. Our fu- 

ture work with this model will focus on dislocation patterning ac- 

companying deformation microstructures like shear bands ( Asaro 

and Rice, 1977; Peirce et al., 1983; Peirce, 1983; Ortiz and Repetto, 

1999; Aubry and Ortiz, 2003 ) and patchy slip ( Piercy et al., 1955; 

Cahn, 1951 ) arising from the effects of strong latent hardening 

( Asaro, 1983; Bassani, 1993 ). Comparison with experiment of the 

evolving cellular and wall patterns formed will also be the subject 

of future work. 

With this work, we hope to have moved the subject of plas- 

ticity, and the development of microstructure in it, to within 

the realm of nonlinear, pattern-forming, time-dependent systems 

without any non-standard restrictions like rate-independence or 

having to pose the problem in a time-discrete manner. A compre- 

hensive large-scale computational study of the nature of conver- 

gence of the observed patterns in our work awaits further study, 

including whether weaker notions of convergence ( Fjordholm 

et al., 2017a,b ) will be required. Also, the significance and utility 

of the work of the French school of Mathematical Morphology (e.g., 

Jeulin, 2013; Angulo, 2017 ) in understanding and characterizing the 

intricate patterns displayed by our model appears to be an inter- 

esting area of future research. 
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