
Mechanics of micropillar confined thin film plasticity

Abhishek Arora∗ Rajat Arora† Amit Acharya‡

Abstract

Micropillar compression experiments probing size effects in confined plasticity of metal thin
films, including the indirect imposition of ‘canonical’ simple shearing boundary conditions, show
dramatically different responses in compression and shear of the film. The Mesoscale Field
Dislocation Mechanics (MFDM) model is confronted with this set of experimental observations
and shown to be capable of modeling such behavior, without any ad-hoc modification to the basic
structure of the theory (including boundary conditions), or the use of extra fitting parameters.
This is a required theoretical advance in the current state-of-the art of strain gradient plasticity
models. It is also shown that significantly different inhomogeneous fields can display qualitatively
similar size effect trends in overall agreement with the experimental results. The (plastic) Swift
and (elastic) Poynting finite deformation effects are also demonstrated.

1 Introduction

Size-effects in confined plasticity of metal thin films sandwiched in ceramic micropillars have been
demonstrated in the work of Meng and co-workers [MCM14, MZHM16, MHM14]. Shear failure
testing of the interfacial regions of CrN/Cu/Si and CrN/Ti/Si ceramic-coating/metal-adhesion
layer/substrate systems through instrumented compression of cylindrical micropillars was reported
in [ZZM+17]. The last thirty years have seen intense world-wide activity in modeling size effects in
metal plasticity at the microscale, initiated by the Strain Gradient Plasticity (SGP) work of Fleck,
Hutchinson and co-workers [FMAH94]; the study of length-scale effects in plasticity was initiated
earlier by Aifantis [Aif87] and co-workers. The confined plasticity results in [MZHM16], however,
have not been successfully modeled by SGP as pointed out in [MZHM16], without rather drastic
modifications to the structure of the theory and introducing extra fitting parameters [KN19a,
KN19b, KTN21]. The aim of our work is to report on the reasonably successful modeling of
the experiments in [MZHM16] with Mesoscale Field Dislocation Mechanics theory [AR06, AA20a,
AZA20, AA20b], and to provide a mechanistic understanding of the observed effects within the
idealization of the model. We also analyze the mechanics of local fields and other interesting
results bearing on historically important observed effects in the large deformation of elastic-plasic
materials.

Conventional plasticity models do not have a material length scale and produce size-independent
response (for homogeneous materials). In SGP theory, the material response is assumed to depend
on both the plastic strain and its spatial gradient [Gur00, FH01, Gud04], and the work conjugate of
the plastic strain gradient is interpreted to be a ‘microscopic stress,’ of unspecified physical origin.
SGP theories predict a much stronger dependence on the film thickness under nominal simple
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shearing conditions compared to experimental observations [MZHM16, MCM14]. This prompted
Kuroda and Needleman [KN19b] to introduce an ad-hoc modification to the constrained boundary
condition specification of SGP theory where it is assumed that a threshold exists on the magnitude of
the plastic strain gradient at boundaries. Above this threshold, the constrained boundary condition
is released and plastic straining is allowed at the boundaries - as is clear, this threshold is not a
material parameter, and it is not clear what its validity is, and how it is to be determined, in general
modes of loading. Kuroda et al. [KTN21] use this boundary condition in a finite deformation
setting along with extensive fitting of their model parameters to the data of [MZHM16] (including
the classical work-hardening modulus and the initial yield stress) to produce results in accord with
the experimental observations on compression of ceramic-metal thin film sandwich micropillars.
Another effort to address this shortcoming of SGP theory is that of Dahlberg and Ortiz [DO19]
who introduce a fractional derivative of the effective plastic strain in the material response (a
fractional SGP theory), whose fractional exponent is intended as a fitting parameter to recover the
experimentally observed scaling of shear stress with layer thickness. Arora and Acharya [AA20b]
used the finite deformation implementation [AZA20] of MFDM theory, without any special fitting
beyond the use of generic material parameters used in MFDM simulations of polycrystalline metals,
to model constrained shearing of a thin film. They recovered the observed size-effect trend in
[MZHM16] corresponding to 45◦-oriented thin film in the micropillar experiments.

Moving beyond the simple thin film-only geometry, in this work we use the MFDM framework to
study the compression experiments of [MZHM16] involving metal thin films sandwiched in ceramic
micropillars, within a plane-strain idealization. As in the experiments, both 45◦ and 90◦ oriented
thin films are considered. The metal layer is sandwiched between two ceramic blocks above and
below it, and the whole composite is put under compression. The schematic of pillars with the
thin film in the 90◦ and 45◦ orientations is shown in Fig. 1. As explained in detail in [MZHM16],
compression of the micropillar with the film in the 45◦ orientation results in a nominal simple
shearing boundary condition imposed on it; compression with the film in the 90◦ orientation results
in compression boundary conditions on the film, with restrained lateral movement at the top and
bottom of the boundaries. The two configurations result in dramatically different observations of
size effects, which we recover.

This paper is organised as follows: the following paragraph contains some notational details.
Section 2 recalls the MFDM governing equations, boundary, and initial conditions. For details on
the physical basis of the model and the computational framework, the interested reader is referred to
[AA20a, AZA20, Aro19]. Section 3 shows the scaling obtained for applied nominal stress with thin
film thickness, for both 90◦ and 45◦ orientations of the film, and provides a mechanistic explanation
for the observations. It is also shown that a free-standing film under simple shear produces normal
stress, as observed in metals bars under torsion [Bil77], and the Poynting effect in non-linear elastic
solids [Poy09]. Section 4 contains some concluding remarks.

Vectors and tensors are represented by bold face lower and upper-case letters. The action of a
second order tensor A on a vector b is denoted by Ab. The inner product of two vectors is denoted
by a · b, while the inner product of two second order tensors is denoted by A : B. A rectangular
Cartesian coordinate system is invoked for ambient space and all (vector) tensor components are
expressed with respect to the basis of this coordinate system. (·),i denotes the partial derivative of
the quantity (·) w.r.t. the xi coordinate of this coordinate system. ei denotes the unit vector in the
xi direction. Einstein’s summation convection is always implied, unless mentioned otherwise. The
symbols grad, div, and curl denote the gradient, divergence, and curl on the current configuration.
For a second order tensor A, vectors v, a, and c, a spatially constant vector field b, the operations
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of div, curl, and cross-product of a tensor (×) with a vector are defined as follows:

(divA) · b = div
(
ATb

)
, ∀ b

b · (curlA) c =
[
curl

(
ATb

)]
· c, ∀ b, c

c · (A× v)a =
[(
ATc

)
× v

]
· a ∀ a, c.

In rectangular Cartesian coordinates, these are denoted by

(divA)i = Aij,j ,

(curlA)ri = εijkArk,j ,

(A× v)ri = εijkArjvk,

where εijk are the components of the third order alternating tensor X.

(a) 90◦ orientation (b) 45◦ orientation

Figure 1: Schematic of idealized plane strain model of micropillar compression experiments.

2 Theory

The governing equations for MFDM [AZA20] are as follows:

α̊ ≡ (div(v))α+ α̇−αLT = − curl(α× V +Lp) (3a)

W = χ+ gradf , F e = W−1

curlχ = −α
divχ = 0

}
(3b)

div
(

grad ḟ
)

= div (α× V +Lp − χ̇− χL) (3c)

div [T (W )] =

{
0 quasistatic
ρv̇ dynamic.

(3d)
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Here, F e is the elastic distortion tensor and W is the inverse of elastic distortion tensor, χ is the
incompatible part of W , f is the plastic position vector, and gradf is the compatible part of W . α
is the dislocation density tensor, v is the material velocity, L = gradv is the velocity gradient, T is
the (symmetric) Cauchy stress tensor, while Lp is the additional meso-scale field which represents
the averaged rate of plastic straining due to all dislocations that cannot be resolved by α × V ,
where both fields represent space-time running averages. The fields in the MFDM framework are
the running space-time averages of corresponding fields of FDM theory.

To close the above set of equations, constitutive laws for V ,Lp,T are derived by keeping the
mechanical dissipation to be non-negative [AA20a].

In the present work, plastic straining in accordance to J2 plasticity theory is augmented with
the regularizing effects of an idealization of microscopic dislocation core energy to get Lp.

Initial conditions for α,f and boundary conditions for α,f ,χ and v are specfied for well-set
evolution.

2.1 Boundary Conditions

• The α evolution equation has a convective boundary condition of the form (α×V +Lp)×n =
Φ, where Φ is a second order tensor valued function of time and position on the boundary
characterising the flux of dislocations at the surface satisfying the constraint Φn = 0.

There are two ways in which the boundary condition is specified: (a) Constrained : Φ(x, t) =
0 at a point x on the boundary for all times, which ensures that there is no outflow of
dislocations at that point of the boundary, and only parallel motion along the boundary is
allowed. (b) Unconstrained : A less restrictive boundary condition where L̂p × n is simply
evaluated at the boundary (akin to an outflow condition), along with the specification of
dislocation flux α(V ·n) on the inflow part of the boundary. Additionally, for all calculations
presented in this paper (curlα× n) = 0 is imposed, a particular specification of a boundary
condition that arises from simple mathematical modeling of the manifestation of dislocation
core energy at the mesoscale.

• For the incompatibility equation, χn = 0 is applied on the outer boundary of the domain,
which along with the system (3b) ensures that χ vanishes when α is zero in the entire domain.

• The f evolution equation requires a Neumann boundary condition i.e., (grad ḟ)n = (α×V +
Lp − χ̇− χL)n on the outer boundary of the domain.

• The material velocity boundary conditions are applied based on the loading type, which is
discussed later in Section 3.

2.2 Initial Conditions

• The initial condition α(x, 0) = 0 is assumed for all sample sizes.

• In general, the initial condition for f is obtained by solving for χ from the incompatibility
equation and solving for f from the equilibrium equation, for prescribed α on the given ini-
tial configuration. We refer to this scheme as the elastic theory of continuously distributed
of dislocations (ECDD) solve on that configuration. For the inital conditions on α consid-
ered above, this step is trivial, with f = X, where X is the position field on the initial
configuration.
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• The model admits an arbitrary specification of ḟ at a point to uniquely evolve f using (3c)
in time, and this rate is prescribed to vanish.

2.3 Constitutive Relations

Constitutive relations in MFDM are required for the stress T , the plastic distortion rate Lp, and the
dislocation velocity V . The details of the thermodynamically consistent constitutive formulations
can be found in Sec. 3.1 of [AA20a]. Table 1 presents the constitutive relation for Cauchy stress and
mesoscopic core energy density for the material. Tables 2 and 3 show the constitutive relations for
plastic distortion rate and dislocation velocity, respectively. Table 4 shows the evolution equation
for material strength.

Saint-Venant-Kirchhoff Material φ(W ) =
1

2ρ∗
Ee : C : Ee, T = F e[C : Ee]F eT

Core energy density Υ (α) =
1

2ρ∗
εα : α

Table 1: Constitutive relations for Cauchy stress and core energy density.

J2 plasticity
L̂p = γ̂W

T
′

|T ′ |
; γ̂ = γ̂0

(
|T ′ |√

2g

) 1
m

Lp = L̂p + l2γ̂ curlα

Table 2: Constitutive relations for plastic strain rate Lp.

T
′
ij = Tij −

Tmm

3
δij ; ai =

1

3
TmmεijkF

e
jpαpk; cl = εijkT

′
jrF

e
rpαpk

d = c−
(
c− a

|a|

)
a

|a|
; V = ζ

d

|d|
; ζ =

(
µ

g

)2

η2bγ̂

Table 3: Constitutive relations for dislocation velocity V .

ġ = h(α, g) (|F eα× V |+ γ̂) ; h(α, g) =
µ2η2b

2(g − g0)
k0|α|+Θ0

(
gs − g
gs − g0

)
Table 4: Constitutive relations for material strength g.

The physical meanings of the material parameters in our model are: µ is the shear modulus,
γ̂0 is the reference strain rate, m is the material rate sensitivity, η is a non-dimensional material
constant in the empirical Taylor relationship for macroscopic strength vs dislocation density, b is the
Burgers vector magnitude of a full dislocation in the crystalline material, g0 is the initial strength
(initial yield stress in shear), gs is the saturation strength, Θ0 is the Stage II hardening rate,
k0 (non-dimensional) characterizes the hardening rate due to geometrically necessary dislocations
(GNDs), and l is a material length related to the gross modeling of mesoscale effects of dislocation
core energy.
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All parameters in our model, except k0 and l, are part of the constitutive structure of well-
accepted models of classical plasticity theory. The parameter k0 was introduced in [AB00]. The
length scale l simply controls the refinement of the GND microstructure and does not play a
physically significant role in our results.

3 Results and Discussion

With reference to Fig. 1, all micropillar compression simulations are performed on initial domain
sizes of 5µm × 10µm, containing polycrystalline Cu thin films in 45◦ and 90◦ orientations. Four
(initial) thin film thicknesses of 0.5µm, 0.8µm, 1.0µm, and 1.2µm are considered in both orien-
tations. Simulations of thin films with the same thicknesses and of 5µm width in free-standing
configurations are also performed, under compression and shear loading. The nominal compression
loading rate is |ê| = 0.001 s−1 for both micropillar and free-standing film configurations, and the
simple shear loading rate is Γ̂ = 0.001 s−1, for the free-standing films. At any time t, the nominal
compressive strain is |e| = |ê|t, while the nominal shear strain is Γ = Γ̂ t.

For the micropillar simulations, the interfaces between the thin film and the ceramic blocks are
assumed to be plastically unconstrained. For the free-standing films, the top/bottom boundaries
are plastically constrained, while the left/right boundaries are plastically unconstrained.

The boundary conditions for material velocity for the micropillar simulations are as follows:

• v1 = v2 = 0 at the bottom boundary of the domain.

• v2 = −|ê|L at the top boundary of the domain, where L is the height of the pillar in the
(undeformed) initial configuration at t = 0.

• The applied traction in the horizontal direction is zero on the top boundary of the domain.

For the free-standing thin films under compression loading, the boundary conditions are as follows:

• v1 = v2 = 0 at the bottom boundary of the domain.

• v1 = 0 and v2 = −|ê|L at the top boundary of the domain. The lateral constraint v1 = 0 on
the top and bottom boundaries is imposed to model the effects of resistance to material flow
along the width of the film due to the ceramic blocks.

For the free-standing thin films under simple shear loading, the boundary conditions are [AA20b]:

• v1 = v2 = 0 at the bottom boundary of the domain.

• v1 = Γ̂L and v2 = 0 at the top boundary of the domain.

• v1 = Γ̂ y and v2 = 0 at the left and right boundaries of the domain, where y is the difference
between the x2 coordinate of any point on the boundary with respect to the bottom boundary.

We also define the yield strength in compression (σ0) in terms of the yield strength in shear (g0) for
different cases: σ0 = 1.14

√
3g0 for the free standing film under compression and for the micropillar

sandwich with 90◦ orientation, while σ0 = 2g0 for the micropillar sandwich with 45◦ orientation.
The parameter values used for all the simulations here are given in Table 5 (identical to [AA20b]

for the metal) and Table 6 for the ceramic. These are the typical material constants for copper and
silicate ceramics. Here, E and ν are the Young’s modulus and the Poisson’s ratio of the materials.
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Parameter
γ̂0 m η b g0 gs Θ0 k0 l E ν

(s−1) (Å) (MPa) (MPa) (MPa) (µm) (GPa)

Value 0.001 0.03 1
3 4.05 17.3 161 392.5 20

√
3× 0.1 62.78 0.3647

Table 5: Material parameters for metal.

Parameter E (GPa) ν

Value 110.0 0.20

Table 6: Material parameters for ceramic.

3.1 Size effects

We begin with the size effect results for the free-standing thin films under simple shear and compres-
sion loadings. These simulations are an idealization of the compression experiments on sandwiched
thin films in the 45◦ and 90◦ orientations within micropillars. These simplified cases already pro-
vide the basic explanation for the different behavior of the micropillars with thin films in the two
orientations. As mentioned earlier, the constrained boundary conditions reflect the constraints of
the ceramic blocks on the films. Without these constraints the deformation is essentially homoge-
neous and no size effect is observed. With the no plastic flow constraint in effect, but no lateral
constraint on material velocity at the top and bottom boundaries in the case of compression, a
weak size effect, similar in both shear (Fig. 2) and compression is predicted; the shear results were
also obtained in [AA20b, Sec. 4.1], in accord with the experimental trends for the film in the 45◦

orientation. With the lateral b.c. constraint on material velocity in compression, a strong size effect
in compression, shown in Fig. 3, is observed. As already observed in [MZHM16], this is essentially
due to the inhomogeneous lateral material deformation, from the top and bottom boundaries to
the center of the film, induced by the material velocity boundary conditions on the film; such inho-
mogeneity is absent in simple shear loading with the no-plastic flow constraint. In both cases, we
observe that the metal film with the smallest thickness hardens the most, due to higher gradients
in Lp for smaller domain sizes (by scaling arguments), which are produced due to the constrained
plastic flow boundary condition on the top/bottom boundary.

With this basic understanding of the gross behavior, we then model the compression of the
various micropillar configurations. Interestingly, we again recover the size-effect trends observed in
experiment, but we demonstrate significant differences in local mechanical fields, in comparison to
the free-standing films, that we describe in Sec. 3.2.

Fig. 4 shows the stress-strain curves and the fitted power law relationship between the stress
and film thickness i.e., (σ − σ0)/σ0 = a Hm. Here, |m| approaches 1.0 at 6% overall strain, and
the same value for the exponent is reported in the experimental work of Meng and co-workers
[MZHM16] on Cu-CrN as-deposited micropillars. As shown in Fig. 5, for the micropillar sandwich
with the thin film in the 90◦ orientation, the film keeps bulging out with increase in the applied
compressive strain, as similarly observed in the post test scanning electron microscope images of
Cu interlayers in [ZZM+17]. Fig. 5 also shows the norm of the Logarithmic strain tensor, |ln (V )|
at 6% overall compression strain for different film thickness, where V is the left stretch tensor of
the Polar Decomposition of F from the initial configuration at t = 0.
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(a) Stress-strain curve (b) Power law fitted curve

Figure 2: (a) Stress-strain curve in simple shear of the free-standing film for different film thickness
(H). (b) Power law fitted for the stress vs film thickness ((τ −g0)/g0 = aHm) at 10%−40% strain.
The first and second term in the legend denote the strain and magnitude of power law exponent
(|m|), respectively.

(a) Stress-strain curve (b) Power law fitted curve

Figure 3: (a) Stress-strain curve in compression of the free-standing film for different film thickness
(H). (b) Power law fitted for the stress vs film thickness ((σ−σ0)/σ0 = aHm) at 5%−15% strain.
The first and second term in the legend denote the strain and magnitude of power law exponent
(|m|), respectively.
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(a) Stress-strain curve (b) Power law fitted curve

Figure 4: (a) Stress-strain curve in compression of the micropillar sandwich with 90◦ film orientation
and for different film thickness (H) . (b) Power law fitted for the stress vs film thickness ((σ −
σ0)/σ0 = aHm) at 1%− 6% strain. The first and second term in the legend denote the strain and
magnitude of power law exponent (|m|), respectively.

(a) H = 0.5 µm (b) H = 1.2 µm

Figure 5: Norm of Logarithmic strain tensor (|ln(V )|) at 6% compression strain (|e|) for the
micropillar sandwich with 90◦ film orientation for different film thickness (H).

Fig. 6(a) shows the stress-strain response for micropillars with the metal thin film in the 45◦

orientation, and Fig. 6(b) shows the fitted power-law relationship between the ‘applied shear stress’
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(a) Stress-strain curve (b) Power law fitted curve

Figure 6: (a) Stress-strain response in compression of the micropillar sandwich with 45◦ orientation
and for different film thickness (H). (b) Power law fitted for the stress vs film thickness ((τ −
g0)/g0 = a Hm) at 1% − 3.5% strain. The first and second term in the legend denote the strain
and magnitude of power law exponent (|m|), respectively.

(for the thin film in the given orientation, given by τ = 1
2σ, where σ is the applied nominal

compressive stress) and film thickness i.e., (τ − g0)/g0 = a Hm. The magnitude of the power-law
exponent (|m|) decreases from 0.728 to 0.347 as |e| increases from 1.0% to 3.0%. The |m| obtained
at 3.5% strain is 0.395, however, if only samples with H >= 0.8 µm are considered, then |m|
obtained will be close to zero. Our model for the plastic straining due to statistical dislocations
(i.e. Lp) is phenomenological and it is expected that as the overall length scale over which plastic
flow occurs decreases, the contribution of Lp in the total plastic strain rate for the model should
decrease (physically, there are fewer and fewer sources, but the phenomenological J2 plasticity
model assumes that there is an abundant supply of sources, and all that is required is stress to
mobilize them). This is not accounted for in the current model and at small scales, e.g. H = 0.5µm,
there is excessive hardening due to higher gradients in Lp.

An eventual reduction in the hardening modulus in the shear stress-strain response in Fig. 6(a)
is observed, approaching a ‘flat’ response on average, but not the shear stress plateau as experimen-
tally observed by [MZHM16]. Our model does not have a failure model for the interfacial regions
which would be capable of demonstrating such response under the intense local shearing observed
in the experiments and in the simulations. Kuroda et al. [KTN21] are able to demonstrate the
observed plateau for the film in the 45◦ orientation in the micropillar; a small value of the harden-
ing modulus is employed in their calculations, a material description that would be hard-pressed
to reproduce the stress-strain behaviour of polycrystalline copper for macroscopic pillar and film
sizes.

3.2 Local fields in the free-standing film vs. the micropillar sandwich

In this section, we show the significant differences in the local mechanical response of the free-
standing films and the micropillar-film sandwich (which, nevertheless, produce the same qualitative
size effects, as already shown).
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When comparing the local fields for the micropillar sandwich with the film in the 45◦ orientation
and the free-standing film, the film for the micropillar case is rotated by 45◦ in an anti-clockwise
sense, for the ease of visualization.

In the following, we define |em| (the subscript m stands for metal) as the nominal compressive
strain in the metal film corresponding to a given nominal compressive strain (|e|) for the entire
domain - for the free-standing film, |em| = |e|, whereas for the micropillar sandwich, it is the
magnitude of the engineering compressive strain calculated from the applied boundary condition
on the top of the pillar and the initial length of the pillar.

We also define Γm as the nominal shear strain in the metal film for micropillar sandwich as well
as the free-standing film.

3.2.1 Micropillar with thin film in the 90◦ orientation

Fig. 7 compares the ρg := |α|/b (GND) field plots at |em| = 15% compressive strain in the metal
film for the free-standing film and the micropillar sandwich. Excess dislocation boundary layers are
absent in the micropillar film configuration. They arise in the free-standing films due to no-flow
boundary conditions. The ρg patterns observed in the micropillar film are driven by the deformation
inhomogeneity induced by the the resistance to horizontal material flow at the boundaries of the
film with the ceramic blocks.

(a) H = 0.5 µm (free-standing film) (b) H = 0.5 µm (micropillar)

Figure 7: ρg = |α|/b (m−2) at |em| = 15% in the metal film for the free-standing film and the
micropillar sandwich with 90◦ orientation. The corresponding |e| for the micropillar is 1.56%.
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(a) H = 0.5 µm (free-standing film) (b) H = 0.5 µm (micropillar)

Figure 8: von Mises stress at |em| = 15% in the metal film for the free-standing film and the
micropillar sandwich with 90◦ orientation. The corresponding |e| for the micropillar is 1.56%.

(a) H = 0.5 µm (free-standing film) (b) H = 0.5 µm (micropillar)

Figure 9: Hydrostatic stress at |em| = 15% in the metal film for the free-standing film and the
micropillar sandwich with 90◦ orientation. The corresponding |e| for the micropillar is 1.56%.

Fig. 8 shows the von Mises stress and Fig. 9 the hydrostatic stress fields (both normalised with
yield stress) at |em| = 15% in the metal film for the free-standing film and the micropillar sandwich.
The magnitude of σv for the free-standing film in Fig. 8 is higher at the top/bottom boundary of
the thin film. The hydrostatic stress is much higher in the case of free-standing film as compared to
the micropillar case. The constraint to lateral motion at the top and bottom boundaries of the film
is softer for the film in the micropillar sandwich, which results in the generation of less hydrostatic
stress.
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3.2.2 Micropillar with thin film in the 45◦ orientation

(a) Γm = 1.02 for H = 0.5 µm (b) Γm = 0.39 for H = 1.2 µm

Figure 10: Nominal shear strain (Γm) in the film at |e| = 3.5% for micropillar with 45◦ orientation,
for different film thickness (H). The green solid line denotes an undeformed line, while the cyan
solid line denotes the corresponding deformed line.

Fig. 10 shows the deformed mesh and the nominal shear strain (Γm) in the metal film at |e| = 3.5%
compressive strain, for different film thickness. Under increased compression, the film material near
the lateral boundaries of the micropillar rotate excessively due to the shearing and (damage-free)
constraint of the ceramic blocks. The calculations are stopped when the film material is close to
penetrating the ceramic blocks, as shown in Fig. 11. Although the magnitude of |e| is not that
high, Γm in the metal film is very large. For instance, at |e| = 3.5%, Γm in the metal film is 102%
for H = 0.5 µm, while it is 39% for H = 1.2 µm.
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Figure 11: The deformed mesh for the micropillar with 45◦ orientation for H = 0.5µm at |e| = 3.8%,
when the film material is close to penetrating into ceramic blocks.

(a) H = 0.5 µm (b) H = 1.2 µm

Figure 12: Norm of Logarithmic strain tensor (|ln(V )|) at 3.5% compression strain in the micropil-
lar sandwich with 45◦ orientation, for different film thickness (H). The solid red line shows the
boundary of the undeformed metal thin film.

Fig. 12 shows field plots of the norm of the Logarithmic strain tensor (|ln(V )|) in the film within
the micropillar, at |e| = 3.5% nominal compressive strain. As expected, for the smaller thickness,
the magnitude of |ln(V )| is higher as the nominal shear strain in the metal film is higher for smaller
thickness (for equal lateral displacement).

Fig. 13 shows the ρg field plots at Γm = 30% for the free-standing film and the micropillar
sandwich with 45◦ orientation. As for the 90◦ orientation case, there are no boundary layers in the
film within the micropillar here, while they are present for the free-standing film.

Fig. 14 and 15 respectively show the von Mises stress (σv) and the hydrostatic stress (σh) field

14



(a) H = 0.5 µm (micropillar) (b) H = 0.5 µm (free-standing film)

Figure 13: ρg = |α|/b (m−2) at Γm = 30% in the metal film for the micropillar sandwich with 45◦

orientation and for the free-standing film. The corresponding |e| for the micropillar is 1.15%, and
the solid red line in (a) shows the boundary of the undeformed metal thin film.

(a) H = 0.5 µm (micropillar) (b) H = 0.5 µm (free-standing film)

Figure 14: von Mises stress at Γm = 30% in the metal film for the micropillar sandwich with 45◦

orientation and for the free-standing film. The corresponding |e| for the micropillar is 1.15%, and
the solid red line in (a) shows the boundary of the undeformed metal thin film.
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(a) H = 0.5 µm (micropillar) (b) H = 0.5 µm (free-standing film)

Figure 15: Hydrostatic stress at Γm = 30% in the metal film for the micropillar sandwich with 45◦

orientation and for the free-standing film. The corresponding |e| for the micropillar is 1.15%, and
the solid red line in (a) shows the boundary of the undeformed metal thin film.

plots for the free-standing and micropillar sandwich configurations.

3.3 Hydrostatic and normal stress in shear

In small deformation elasticity or metal plasticity, shearing induced normal stresses are rarely
observed. However, such couplings are observed in finite elastic [Poy09] and plastic [Bil77] defor-
mations. We explore such possibilities in our simulations of simple shearing of free-standing films
and compression of micropillar sandwich with 45◦ film orientation. To do so, we define the ‘driving’
stress (σap2 ) in both configurations as the average reaction stress in the vertical direction on the
top boundary of the domain. The averages of the various components of the Cauchy stress tensor
over the metal film are also defined as (σavg1 , σavg2 , σavg3 , τavg), denoting the averages of the (T11,
T22, T33, T12) components, respectively. The averaged generated hydrostatic stress in the film is
denoted by σavgh .

The values of the driving stress and the averages of generated stress components for the mi-
cropillar sandwich and the free-standing film at Γm = 30% are reported in Table 7. The state
of loading is multi-axial for both the micropillar sandwich and the free-standing film. However,
the ‘average stress state’ in the case of the micropillar sandwich is more hydrostatic (confined) in
nature, while it is predominantly shear driven for the free-standing film, as also shown in Fig. 15.
The magnitude of hydrostatic stress in the free-standing film is much smaller than in the film in
the micropillar, primarily due to the applied compressive loading on the pillar; nevertheless, the
free-standing film generates compressive normal reactions at the boundary, for solely applied shear
velocity boundary conditions (along with a constraint to motion of the boundary in the normal
direction, of course).

Specimen σap2 /σ0 σavg1 /σ0 σavg2 /σ0 σavg3 /σ0 τavg/σ0 σavgh /σ0
Micropillar sandwich -6.086 -0.122 -6.241 -2.283 0.109 -2.882

Free-standing film -0.048 -0.01 -0.035 -0.026 2.912 -0.024

Table 7: Driving stress and averaged stress components in the micropillar sandwich and the free-
standing film at Γm = 30%.
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Despite this significant difference, the averaged hydrostatic stress normalized by the driving normal
stress is of the same order of magnitude for both cases:

σavgh /σap2 = 0.474, (Micropillar Sandwich) (4a)

σavgh /σap2 = 0.497 (Free-Standing Film) (4b)

(considering a normalization by applied stress component normal to the film in the micropillar
increases the result by a factor of 2). This suggests a unifying ‘collapse’ of data for understanding
normal stress effects in nominal simple shearing, produced by significantly different applied loading
conditions.

Figure 16: Normal and transverse reaction stress on the top boundary of the free-standing film
subjected to simple shearing, for H = 0.5 µm.

The normal stress observed here arises as a combination of the Swift effect [Bil77] and the
Poynting effect [Poy09]. One way to think about how these normal stresses are generated in the
free-standing film is as follows: the T22 component of the Cauchy stress tensor is non-zero, a
nonlinear elastic Poynting effect to begin with. This further generates T

′
22 and T

′
11 components of

the deviatoric stress tensor, and these components of stress generate plastic straining in the Lp
11

and Lp
22 components. However, due to the deformation constraints imposed by the simple shear

boundary conditions in the x1-direction on the lateral sides of the specimen, and the x2-direction
on the top and bottom of the domain, further T11 and T22 components of stress are generated. All
of this combined generates a non-zero hydrostatic stress field and the idealized Swift effect shown
in Fig. 16, in simple shearing of the free-standing films.
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3.4 Effect of b.c.s on plastic flow in the micropillar sandwich

Figure 17: Stress-strain curve for the micropillar sandwich with 45◦ orientation for H = 0.8 µm
case and with C and UC metal-ceramic interface.

(a) UC (b) C

Figure 18: ρg = |α|/b (m−2) at |e| = 3.5% for H = 0.8µm with C and UC metal-ceramic interface.
The solid red line shows the boundary of the undeformed metal thin film.

Fig. 17 shows the stress-strain curve and Fig. 18 shows the (ρg) field plots at |e| = 3.5%, for
H = 0.8 µm, and for both the plastically constrained (C) and unconstrained (UC) metal-ceramic
interfaces. The stress-strain response for the constrained case is marginally harder as compared
to the unconstrained case. For the constrained case, there is a thin boundary layer in ρg field
at the metal-ceramic interface. The effect of the interface condition is not prominent here due
to strong heterogeneity in plastic flow across the interface, and hence, having an elastic-plastic
interface with plastic flow unconstrained has more or less the same effect as a plastically constrained
interface. This is borne out also in the simple shear loading of free-standing films, where the effect
of constrained/unconstrained boundary condition is much more prominent in stress-strain response,
as shown by [AA20b] (refer to Fig. 6(b) in their paper), due to the absence of constraining elastic
material. Similar effects were observed in the study of mechanical response of multi-crystalline thin
films in [PDA11]. It was observed there that the effect of constrained/unconstrained grain boundary
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conditions on the stress-strain response decreased on increasing the misorientation between adjacent
grains, as the plastic flow through a grain boundary decreases with increase in the misorientation.

4 Conclusion

Experimentally observed size effects in confined metal thin films, in different orientations within
micropillars subjected to compression, have been successfully reproduced in our work, using a
computational framework based on MFDM developed in [AZA20]. This advances the current
state-of-the-art of SGP models addressing this set of experiments, as no extraneous assumptions
about the nature of required boundary conditions involving, in addition, extra fitting parameters
of dubious physical origin, are introduced. The results obtained in this paper further strengthens
the case, beyond [RA06, ZAWB15, PDA11, AA20a, AA20b, AZA20], for MFDM as an appropriate
model for dislocation mediated mesoscale plasticity. A shortcoming that needs to be addressed
is to improve our model for plastic straining due to statistical dislocations, Lp, so that its effect
diminishes at smaller length scales.
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