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Abstract—Traditional numerical approaches have been suc-
cessfully used to model mechanical behavior of heterogeneous
materials (composites, multicomponent alloys, and polycrystals)
widely used in industrial applications. However, these methods
require a fine mesh resulting in computationally expensive and
time-consuming calculations. The physics-informed deep-learning
based super-resolution framework (PhySRNet) introduced in this
paper is aimed at overcoming this computational challenge.
PhySRNet enables reconstruction of high-resolution solution
fields from their low-resolution counterparts without requiring
labeled data, thereby allowing researchers to run their numerical
simulations on a coarse mesh. Through an illustrative example,
we demonstrate that the super-resolved fields match the accuracy
of an advanced numerical solver running at 400 times the coarse
mesh resolution and satisfy the (highly nonlinear) governing laws.
The approach opens the door to applying machine learning
and traditional numerical approaches in tandem to reduce
computational complexity and accelerate scientific discovery and
engineering design.

Index Terms—Convolution Neural Network, Physics informed
Neural Network (PINN), Surrogate Model, Super-resolution,
Hyperelasticity, FEM Simulation.

I. INTRODUCTION

NUMERICAL methods such as Finite element method
[1], Isogeomteric analysis [2], and mesh-free methods

[3, 4] are few of the conventional approaches employed in
solving the Partial Differential Equations (PDEs) involved in
computational solid mechanics problems. However, the ever-
increasing sophistication of material models by incorporating
more complex physics, such as modeling size-effect [5, 6]
or dislocation density evolution [7–11], or advanced materials
such as composites and multicomponent alloys with spatially-
varying material properties (heterogeneity) and direction de-
pendent behavior (anisotropy) is bringing these numerical
solvers to their limits. Hence, it is becoming a formidable task
to perform simulations that can resolve the complex physical
phenomena occurring at small spatial and temporal scales
and accurately predict the macro-scale behavior of materials.
Therefore, a cost-effective physics-based surrogate model that
allows the researchers to perform simulations on a coarse mesh
without sacrificing accuracy will be highly beneficial for many
reasons. First, researchers can choose to run their simulations

at a lower resolution (online stage) and later reconstruct the
solution back to the target resolution (offline stage). This
will significantly reduce the computational expense during
the online stage, thus accelerating the process of scientific
investigation and discovery. Second, the surrogate model based
on data super-resolution can also be used to enhance outputs
from experimental techniques for full-field displacement and
strain measurement such as Digital Image Correlation (DIC)
which would allow researchers to generate and store a small
fraction of data.

Recent advances in Deep Learning (DL) and Physics-
Informed Neural Networks (PINN) [12, 13] make it a promis-
ing tool to tackle this computational challenge. Several ap-
plications of PINNs can be found in the literature ranging
from modeling of fluid flows and Navier Stokes equations
[14–16], cardiovascular systems [17, 18], and material mod-
eling [19–22], among others. More recently, inspired by the
growing success of image super-resolution techniques in the
field of computer vision [23–26], researchers have explored the
possibility of using deep learning based super-resolution (SR)
technique to reconstruct high-resolution (HR) fluid flow fields
from low-resolution (LR) (possibly noisy) data [27–34]. In a
proof of concept, Arora [35] investigated the application of
physics-informed SR for a linear elasticity problem. However,
technical challenges still remain in developing a physics-
informed DL based model for super-resolution in computa-
tional solid mechanics in label-free scenario, especially for
materials undergoing large deformation.

While the data-driven approaches for reconstructing HR
flow fields have also shown promising results, these ap-
proaches require large amount of computationally expensive
HR labeled data for training. Moreover, the output solution
fields may fail to satisfy the governing laws of the system
(PDEs and initial/boundary conditions) since these models
lack any physics-based constraints.

In this paper, we propose a physics-informed deep learn-
ing based super-resolution framework (PhySRNet) mechan-
ics without requiring any HR labeled data. In particular,
we explore and demonstrate the effectiveness of PhySRNet
for resolving the LR displacement and stress fields in the



body undergoing hyperelastic deformation in the absence of
any HR data. The LR input data is obtained by running
simulations on a coarse mesh which is 400 times coarser
than the target resolution. Furthermore, the chosen material
model also presents a special scenario wherein the model
initialization plays an important role in guiding its convergence
which makes the application to nonlinear solids significantly
distinguishing from prior works involving super-resolution of
fluid flow.

The layout of the rest of this paper is as follows: In Sec. II,
a brief review of the governing equations for modeling hyper-
elastic deformation in solids is presented. Model architecture
and construction of physics-based loss function are discussed
in sections III-A and III-B, respectively. The simulation setup
for generating LR displacement and stress field data, to be
used as input, for training and evaluating the machine learning
framework is presented in Sec. IV-A. Sec. IV presents the
results that demonstrate the effectiveness of the proposed
framework in super-resolving the stress and displacement
fields for the example problem considered. Conclusions and
future opportunities are presented in Sec. V.

II. BACKGROUND

This section presents the governing equations for modeling
the hyperelastic behavior in solids.

A. Governing equations for hyper-elastic modeling

We briefly recall the governing equations for modeling
the behavior of hyperelastic solids. The reader is referred
to standard textbooks [36] for a detailed discussion on the
thermodynamics and mechanics of continuous media. We
use the mixed-variable formulation, i.e., displacement vector
and stress tensor fields (u,P ) as unknowns in this work.
This formulation is shown to be of crucial importance to
ensure greater numerical accuracy of the solution and avoiding
convergence issues for linear [37] and nonlinear [20] cases
during model training. The governing equations, in the absence
of inertial forces, are given as follows:

DivP + b = 0, in Ω,

PN = tbc on ∂ΩN and u = ubc on ∂ΩD.
(1)

In the above, P denotes the first Piola-Kirchhoff stress, and
b denotes the body force per unit volume of the undeformed
(reference) configuration Ω of the material. Div denotes the
divergence operator in the configuration Ω. tbc and ubc denote
the known traction and displacement vectors on the (non-
overlapping) parts of the boundary ∂ΩN and ∂ΩD, respec-
tively. N denotes the unit outward normal to the external
boundary ∂Ω.

In this work, the material is assumed to behave as a
compressible analog of Neo-Hookean material whose stored
energy density and constitutive relationship are given as

ψ =
µ

2
(trace(B)− 3)− µ ln J ; J = det(F ), (2)

P = µ (B − I) , (3)
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Fig. 1: The schematic of physics-informed super-resolution
framework.

where µ denotes the shear modulus of the material, and
I denotes the second order identity tensor. B = FF T

denotes the left Cauchy–Green tensor and F = I + ∇u
denotes the deformation gradient. We emphasize that finite
deformation material modeling requires special consideration
during the initialization of the model’s weights (discussed
in section III-B) since the constraint J(X,Y ) > 0 has to
be strictly satisfied at every point (X,Y ) in the undeformed
configuration. Under two-dimensional plane-strain conditions,
the unknown components for displacement vector u and stress
tensor P are (ux, uy) and (Pxx, Pyy, Pxy, Pyx), respectively.

III. METHODOLOGY

This section discusses the architecture of PhySRNet fol-
lowed by the discussion on construction of the loss function
for the training of the model.

A. Model Architecture

The composite architecture of the physics-informed super-
resolution network (PhySRNet) proposed in this work is shown
in Fig. 1. We use a separate neural network to resolve each
solution field individually as this composite learning structure
with decoupled sub-networks has been shown to be effective in
enhancing the learning performance for multivariate regression
problems [38]. This approach also allows the trainable network
parameters to be decoupled for each solution field with varying
magnitudes and spatial distribution.

The architecture of individual sub-networks is built upon the
Residual Dense Network (RDN) proposed in [26]. The RDN
architecture comprises four parts: a) shallow feature extraction
net (SFENet), b) residual dense blocks (RDBs), c) dense
feature fusion (DFF), and d) up-sampling net (UPNet). The
architecture has several unique advantages when compared
to other SR architectures [26, sec. 4] including the property
to extract abundant local features via dense convolutional
layers from LR input and the ability to adaptively fuse the
hierarchical features in a global way.

Each sub-net uses the following hyper-parameters: number
of residual blocks: 2, number of layers in each residual block:
4, growth rate: 32, and number of features: 32. The inputs
to the model consist of LR data (ux, uy, Pxx, Pyy, Pxy, Pyx)
obtained by running simulations on a coarse mesh (see Fig. 2b)
and then interpolating the solution (using FEM basis functions)
on a 32 × 32 structured grid. The outputs of the framework
correspond to the HR data on a 128 × 128 structured grid
shown in Figure 2c.



B. Constructing the loss function

In the absence of any HR labeled data, the network’s
total loss L is obtained from the physics-based constraints
of the system - governing PDEs, constitutive law, and bound-
ary/initial conditions. However, it has been well documented
that presence of multiple components in L gives rise to
competing effects amongst them leading to convergence issues
during the training of the model [20, 39, 40]. Therefore, in
this work, we choose to impose the boundary conditions in a
“hard” manner thus eliminating their contribution from total
loss L.

For each unknown field component, the boundary condi-
tions are imposed in a hard manner by using a composite
scheme which consists of using a function F that satisfies the
boundary condition, a function G that is zero on the Dirichlet
boundaries, and the output N of the DL model. The final
solution to the super-resolution problem for each output field
Φ ∈ {ux, uy, Pxx, Pyy, Pxy, Pyx} is then given as follows:

Φ(X,Y ) = FΦ(X,Y ) +NΦ(X,Y ) · GΦ(X,Y ) (4)

For complicated geometries and boundary conditions, the
above strategy can be generalized to obtain functions F and
G as outputs of separate DL models as shown in [37]. For
finite deformation material modeling, the physical constraint
J(X,Y ) > 0 has to be strictly enforced as well. Since the
boundary conditions are satisfied exactly, the total loss L is
given as follows

L = λ1 L(DivP , 0)︸ ︷︷ ︸
PDE

+λ2 L(P , µ (B − I))︸ ︷︷ ︸
Constitutive law

+ LJ︸︷︷︸
J>0

, (5)

where L(P,Q) measures the mean absolute error (MAE) for
the prediction P and target Q. The constraint loss LJ is given
as LJ = ||min(0, detF )||1 where ||(·)||1 denotes the L1 norm
of the quantity (·). We utilize fourth order finite difference
scheme to evaluate the derivatives of the fields on the fine
mesh.

The current work involving super-resolution to nonlinear
solid mechanics problems has a significantly distinguishing
feature from its application to resolving fluid flow in that any
technique for initialization of model weights would not satisfy
the physical constraint J(X,Y ) > 0 initially. This leads to
nonconvergence during model training using any optimization
strategies such as the family of gradient descent methods. To
remedy this, we first train the model to satisfy the constraint
exactly (LJ = 0) by setting λ1 = λ2 = 0 during the few initial
epochs of the training. After that, we choose λ1 = 1 and λ2 =
10 based on the heuristics that the equilibrium equation (1)
also depends the derivatives of µ for heterogeneous materials.

The framework is implemented and trained using PyTorch
framework [41]. The network’s total loss L is minimized
by iteratively updating its trainable parameters. The whole
training process consists of two stages: i) Initial conver-
gence using Adam optimizer [42] with an initial learning
rate η = 10−3, and ii) use of L-BFGS optimizer until the
loss finally converges to a small value. While using Adam
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Fig. 2: a) Schematic showing the geometry and the applied
boundary conditions. b) Coarse triangular mesh with 41 nodes.
c) 128 × 128 fine mesh with 16384 nodes. The LR data is
refined by ≈ 400 times.

optimizer, the learning rate is also adaptively reduced by using
ReduceLROnPlateau scheduler with the patience set
to 40. The source code for the proposed framework along
with the dataset used in this research can be found at https://
github.com/sairajat/SuperResolutionFiniteDeformation/ upon
acceptance of this paper.

IV. RESULTS & DISCUSSION

A. Synthesis of low-resolution data

To illustrate the application of the proposed approach, an
example problem is setup as follows: We consider an isotropic
body deforming quasi-statically under plane strain conditions
subjected to the loading boundary conditions as shown in
Fig. 2a. The body force vector b = (bx, by) is given as

bx = µs

[
9π2 cos(2πX) sin(πY )− π cos(πX)QY 3

]
,

by = µs

[
−6 sin(πX)QY 2 + 2π2 sin(2πX) cos(πY )

+ 0.25π2 sin(πX)QY 4
]
,

where µs is taken to be 0.50. The shear modulus µ(X,Y ) of
the material is taken to be

µ =
µs

2
[3 + sin(2πkX) sin(2πkY )] ; k = 5, (6)

to represent a body with heterogeneous material properties.
The scalar Q ∈ [0.02, 0.20] directly affects the magnitudes of
boundary conditions (see Fig. 2a) and the body force b. In this
work, we use the following analytical forms of the functions
F and G that ensure satisfaction of the boundary conditions

GPxx
= X (1−X), Gux

= Y (1− Y ),

Guy
= XY (1−X)(1− Y ).

The ground truth data is generated by solving the system of
equations (1) on a coarse mesh (shown in Fig. 2) using Finite
Element Method in Fenics [43] for 100 regularly sampled
values of Q. The data is then randomly split in a 80 : 20
ratio for training and test purposes.

B. Application to hyperelasticity

We now demonstrate the effectiveness of PhySRNet by
applying it to reconstruct the HR displacement and stress
fields for the problem setup discussed in section IV-A. The
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Fig. 3: The color contours of displacement vector and stress tensor components in two-dimensional elastic deformation
reconstructed with physics-informed super-resolution frameworks. Values below the plots indicate the error e. In both the
blocks, the LR input data, bicubic interpolation, PhySRNet predictions, and HR ground truth data are plotted from the left to
right.

framework takes the coarse mesh solution fields interpolated
to a 32× 32 grid as inputs and outputs the solution fields on
a 128× 128 structured grid which is approximately 400 times
finer than the coarse mesh. We note that the framework pre-
sented herein can be generalized to work with non-rectangular
domains by utilizing elliptic coordinate transformation as
outlined in [44].

Figure 3 presents the results for the reconstructed displace-
ment and stress fields obtained from PhySRNet for 2 different
values of Q. A simple bicubic interpolation of the solution
fields and the HR reference data are plotted for comparison.
We note that the HR reference data is used only for the
comparison with the model outputs. The figure clearly show
that the reconstructed solutions fields are in great agreement
with the HR reference data. The model is successfully able to
resolve the spatial variation in the output fields even though
the LR inputs lacked such variation. To quantitatively measure

the accuracy, we define an error measure e as

e =
||IHR − ILR||L2

||IHR||L2

. (7)

The value of e is reported underneath the reconstructed fields
obtained using the PhySRNet and the bicubic interpolation.
As can be seen from figure 3, the error e is larger for data
obtained from bicubic interpolation method since the outputs
may not faithfully satisfy the governing laws of the system.
The small values of e for the model predictions signify that
the reconstructed HR outputs obtained from PhySRNet almost
match the accuracy of an advanced numerical solver running
at 400 times the coarse mesh resolution. Therefore, we can
conclude that PhySRNet successfully enhanced the spatial
resolution of the solution fields while ensuring that they satisfy
the governing laws of the system.



V. CONCLUSION & FUTURE WORK

In summary, we successfully trained and evaluated a
physics-informed deep learning based super-resolution frame-
work (PhySRNet) to reconstruct the deformation fields in
a heterogeneous body undergoing hyperelastic deformation
without requiring any HR labeled data. The approach is
successfully able to learn high-resolution spatial variation
of displacement and stress fields from their low-resolution
counterparts for the example problem discussed. We show
that the outputs from the PhySRNet match the accuracy
of an advanced numerical solver running at 400 times the
coarse mesh resolution (see Figs. 2b and 2c). This approach
exemplifies how machine-learning can be leveraged alongside
numerical simulations to reduce the computational complexity
and accelerate scientific discovery and engineering design
without sacrificing accuracy.

While the current work focuses on nonlinear quasi-static
problems, the future work aims to extend the framework for
both spatial and temporal super-resolution of (unsteady) elas-
todynamics problems in two and three dimensions. Moreover,
we also aim to modify the architecture of the PhySRNet to
explore if a sequence of low-resolution data inputs could help
to further improve the quality of the reconstruction.
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